

Welcome to MMPretrain’s documentation!

MMPretrain is a newly upgraded open-source framework for pre-training.
It has set out to provide multiple powerful pre-trained backbones and
support different pre-training strategies. MMPretrain originated from the
famous open-source projects
MMClassification [https://github.com/open-mmlab/mmclassification/tree/1.x]
and MMSelfSup [https://github.com/open-mmlab/mmselfsup], and is developed
with many exiciting new features. The pre-training stage is essential for
vision recognition currently. With the rich and strong pre-trained models,
we are currently capable of improving various downstream vision tasks.

Our primary objective for the codebase is to become an easily accessible and
user-friendly library and to streamline research and engineering. We
detail the properties and design of MMPretrain across different sections.

Hands-on Roadmap of MMPretrain

To help users quickly utilize MMPretrain, we recommend following the hands-on
roadmap we have created for the library:

	For users who want to try MMPretrain, we suggest reading the GetStarted
section for the environment setup.

	For basic usage, we refer users to UserGuides for utilizing various
algorithms to obtain the pre-trained models and evaluate their performance
in downstream tasks.

	For those who wish to customize their own algorithms, we provide
AdvancedGuides that include hints and rules for modifying code.

	To find your desired pre-trained models, users could check the ModelZoo,
which features a summary of various backbones and pre-training methods and
introfuction of different algorithms.

	Additionally, we provide Analysis and Visualization tools to help
diagnose algorithms.

	Besides, if you have any other questions or concerns, please refer to the
Notes section for potential answers.

We always welcome PRs and Issues for the betterment of MMPretrain.

Get Started

	Prerequisites

	Installation

User Guides

	Learn about Configs

	Prepare Dataset

	Inference with existing models

	Train

	Test

	Downstream tasks

Advanced Guides

	Adding New Dataset

	Customize Data Pipeline

	Customize Models

	Customize Training Schedule

	Customize Runtime Settings

	Customize Evaluation Metrics

	Convention in MMPretrain

Model Zoo

	Model Zoo Summary

	ArcFace

	BarlowTwins

	BEiT

	BEiTv2

	BLIP

	BLIP-2

	BYOL

	CAE

	ChineseCLIP

	CLIP

	Conformer

	ConvMixer

	ConvNeXt

	ConvNeXt V2

	CSPNet

	CSRA

	DaViT

	DeiT

	DeiT III: Revenge of the ViT

	DenseCL

	DenseNet

	DINOv2

	EdgeNeXt

	EfficientFormer

	EfficientNet

	EfficientNetV2

	EVA

	EVA-02

	Flamingo

	GLIP

	HiViT

	HorNet

	HRNet

	Inception V3

	iTPN

	LeViT

	LLaVA

	MAE

	MaskFeat

	MFF

	MILAN

	MiniGPT4

	MixMIM

	MLP-Mixer

	MobileNet V2

	MobileNet V3

	MobileOne

	MobileViT

	MoCoV2

	MoCoV3

	MViT V2

	OFA

	Otter

	PoolFormer

	RegNet

	RepLKNet

	RepMLP

	RepVGG

	Res2Net

	ResNet

	ResNeXt

	Reversible Vision Transformers

	RIFormer

	SAM

	SEResNet

	Shufflenet V1

	Shufflenet V2

	SimCLR

	SimMIM

	SimSiam

	SparK

	SwAV

	Swin-Transformer

	Swin-Transformer V2

	Tokens-to-Token ViT

	TinyViT

	Transformer in Transformer

	Twins

	Visual-Attention-Network

	VGG

	VIG

	Vision Transformer

	Wide-ResNet

	XCiT

Visualization

	Dataset Visualization

	Hyper-parameter Scheduler Visualization

	Class Activation Map (CAM) Visualization

	t-Distributed Stochastic Neighbor Embedding (t-SNE) Visualization

Analysis Tools

	How to Get the Complete Config

	Verify Dataset

	Log and Results Analysis

	Model Complexity Analysis

	Confusion Matrix

	Shape Bias Tool Usage

Deployment

	Torchserve Deployment

Migration

	Migration

	General change of config

	Migration from MMClassification 0.x

	Migration from MMSelfSup 0.x

API Reference

	mmpretrain.apis

	mmpretrain.engine

	mmpretrain.datasets

	Data Process

	mmpretrain.models

	mmpretrain.structures

	mmpretrain.visualization

	mmpretrain.evaluation

	mmpretrain.utils

Notes

	Contributing to MMPreTrain

	Projects based on MMPretrain

	Changelog (MMPreTrain)

	Changelog (MMClassification)

	Frequently Asked Questions

	How to Pretrain with Custom Dataset

	How to Fine-tune with Custom Dataset

Device Support

	NPU (HUAWEI Ascend)

Indices and tables

	Index

	Search Page

Prerequisites

In this section we demonstrate how to prepare an environment with PyTorch.

MMPretrain works on Linux, Windows and macOS. It requires Python 3.7+, CUDA 10.2+ and PyTorch 1.8+.

Note

If you are experienced with PyTorch and have already installed it, just skip this part and jump to the next section. Otherwise, you can follow these steps for the preparation.

Step 1. Download and install Miniconda from the official website [https://docs.conda.io/en/latest/miniconda.html].

Step 2. Create a conda environment and activate it.

conda create --name openmmlab python=3.8 -y
conda activate openmmlab

Step 3. Install PyTorch following official instructions [https://pytorch.org/get-started/locally/], e.g.

On GPU platforms:

conda install pytorch torchvision -c pytorch

Warning

This command will automatically install the latest version PyTorch and cudatoolkit, please check whether they match your environment.

On CPU platforms:

conda install pytorch torchvision cpuonly -c pytorch

Installation

Best Practices

According to your needs, we support two install modes:

	Install from source (Recommended): You want to develop your own network or new features based on MMPretrain framework. For example, adding new datasets or new backbones. And you can use all tools we provided.

	Install as a Python package: You just want to call MMPretrain’s APIs or import MMPretrain’s modules in your project.

Install from source

In this case, install mmpretrain from source:

git clone https://github.com/open-mmlab/mmpretrain.git
cd mmpretrain
pip install -U openmim && mim install -e .

Note

"-e" means installing a project in editable mode, thus any local modifications made to the code will take effect without reinstallation.

Install as a Python package

Just install with mim.

pip install -U openmim && mim install "mmpretrain>=1.0.0rc8"

Note

mim is a light-weight command-line tool to setup appropriate environment for OpenMMLab repositories according to PyTorch and CUDA version. It also has some useful functions for deep-learning experiments.

Install multi-modality support (Optional)

The multi-modality models in MMPretrain requires extra dependencies. To install these dependencies, you
can add [multimodal] during the installation. For example:

Install from source
mim install -e ".[multimodal]"

Install as a Python package
mim install "mmpretrain[multimodal]>=1.0.0rc8"

Verify the installation

To verify whether MMPretrain is installed correctly, we provide some sample codes to run an inference demo.

Option (a). If you install mmpretrain from the source, just run the following command:

python demo/image_demo.py demo/demo.JPEG resnet18_8xb32_in1k --device cpu

You will see the output result dict including pred_label, pred_score and pred_class in your terminal.

Option (b). If you install mmpretrain as a python package, open your python interpreter and copy&paste the following codes.

from mmpretrain import get_model, inference_model

model = get_model('resnet18_8xb32_in1k', device='cpu') # or device='cuda:0'
inference_model(model, 'demo/demo.JPEG')

You will see a dict printed, including the predicted label, score and category name.

Note

The resnet18_8xb32_in1k is the model name, and you can use mmpretrain.list_models to
explore all models, or search them on the Model Zoo Summary

Customize Installation

CUDA versions

When installing PyTorch, you need to specify the version of CUDA. If you are
not clear on which to choose, follow our recommendations:

	For Ampere-based NVIDIA GPUs, such as GeForce 30 series and NVIDIA A100, CUDA 11 is a must.

	For older NVIDIA GPUs, CUDA 11 is backward compatible, but CUDA 10.2 offers better compatibility and is more lightweight.

Please make sure the GPU driver satisfies the minimum version requirements. See this table [https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-major-component-versions__table-cuda-toolkit-driver-versions] for more information.

Note

Installing CUDA runtime libraries is enough if you follow our best practices,
because no CUDA code will be compiled locally. However if you hope to compile
MMCV from source or develop other CUDA operators, you need to install the
complete CUDA toolkit from NVIDIA’s website [https://developer.nvidia.com/cuda-downloads],
and its version should match the CUDA version of PyTorch. i.e., the specified
version of cudatoolkit in conda install command.

Install on CPU-only platforms

MMPretrain can be built for CPU only environment. In CPU mode you can train, test or inference a model.

Install on Google Colab

See the Colab tutorial [https://colab.research.google.com/github/mzr1996/mmclassification-tutorial/blob/master/1.x/MMClassification_tools.ipynb].

Using MMPretrain with Docker

We provide a Dockerfile [https://github.com/open-mmlab/mmpretrain/blob/main/docker/Dockerfile]
to build an image. Ensure that your docker version [https://docs.docker.com/engine/install/] >=19.03.

build an image with PyTorch 1.12.1, CUDA 11.3
If you prefer other versions, just modified the Dockerfile
docker build -t mmpretrain docker/

Run it with

docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmpretrain/data mmpretrain

Trouble shooting

If you have some issues during the installation, please first view the FAQ page.
You may open an issue [https://github.com/open-mmlab/mmpretrain/issues/new/choose]
on GitHub if no solution is found.

Learn about Configs

To manage various configurations in a deep-learning experiment, we use a kind of config file to record all of
these configurations. This config system has a modular and inheritance design, and more details can be found in
the tutorial in MMEngine [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html].

Usually, we use python files as config file. All configuration files are placed under the configs [https://github.com/open-mmlab/mmpretrain/tree/main/configs] folder, and the directory structure is as follows:

MMPretrain/
 ├── configs/
 │ ├── _base_/ # primitive configuration folder
 │ │ ├── datasets/ # primitive datasets
 │ │ ├── models/ # primitive models
 │ │ ├── schedules/ # primitive schedules
 │ │ └── default_runtime.py # primitive runtime setting
 │ ├── beit/ # BEiT Algorithms Folder
 │ ├── mae/ # MAE Algorithms Folder
 │ ├── mocov2/ # MoCoV2 Algorithms Folder
 │ ├── resnet/ # ResNet Algorithms Folder
 │ ├── swin_transformer/ # Swin Algorithms Folder
 │ ├── vision_transformer/ # ViT Algorithms Folder
 │ ├── ...
 └── ...

If you wish to inspect the config file, you may run python tools/misc/print_config.py /PATH/TO/CONFIG to see the complete config.

This article mainly explains the structure of configuration files, and how to modify it based on the existing configuration files. We will take ResNet50 config file [https://github.com/open-mmlab/mmpretrain/blob/main/configs/resnet/resnet50_8xb32_in1k.py] as an example and explain it line by line.

Config Structure

There are four kinds of basic component files in the configs/_base_ folders, namely：

	models [https://github.com/open-mmlab/mmpretrain/tree/main/configs/_base_/models]

	datasets [https://github.com/open-mmlab/mmpretrain/tree/main/configs/_base_/datasets]

	schedules [https://github.com/open-mmlab/mmpretrain/tree/main/configs/_base_/schedules]

	runtime [https://github.com/open-mmlab/mmpretrain/blob/main/configs/_base_/default_runtime.py]

We call all the config files in the _base_ folder as primitive config files. You can easily build your training config file by inheriting some primitive config files.

For easy understanding, we use ResNet50 config file [https://github.com/open-mmlab/mmpretrain/blob/main/configs/resnet/resnet50_8xb32_in1k.py] as an example and comment on each line.

base = [# This config file will inherit all config files in `_base_`.
 '../_base_/models/resnet50.py', # model settings
 '../_base_/datasets/imagenet_bs32.py', # data settings
 '../_base_/schedules/imagenet_bs256.py', # schedule settings
 '../_base_/default_runtime.py' # runtime settings
]

We will explain the four primitive config files separately below.

Model settings

This primitive config file includes a dict variable model, which mainly includes information such as network structure and loss function:

	type: The type of model to build, we support several tasks.

	For image classification tasks, it’s usually ImageClassifier You can find more details in the API documentation.

	For self-supervised leanrning, there are several SelfSupervisors, such as MoCoV2, BEiT, MAE, etc. You can find more details in the API documentation.

	For image retrieval tasks, it’s usually ImageToImageRetriever You can find more details in the API documentation.

Usually, we use the type field to specify the class of the component and use other fields to pass
the initialization arguments of the class. The registry tutorial [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/registry.html] describes it in detail.

Here, we use the config fields of ImageClassifier as an example to
describe the initialization arguments as below:

	backbone: The settings of the backbone. The backbone is the main network to extract features of the inputs, like ResNet, Swin Transformer, Vision Transformer etc. All available backbones can be found in the API documentation.

	For self-supervised leanrning, some of the backbones are re-implemented, you can find more details in the API documentation.

	neck: The settings of the neck. The neck is the intermediate module to connect the backbone and the head, like GlobalAveragePooling. All available necks can be found in the API documentation.

	head: The settings of the task head. The head is the task-related component to do a specified task, like image classification or self-supervised training. All available heads can be found in the API documentation.

	loss: The loss function to optimize, like CrossEntropyLoss, LabelSmoothLoss, PixelReconstructionLoss and etc. All available losses can be found in the API documentation.

	data_preprocessor: The component before the model forwarding to preprocess the inputs. See the documentation for more details.

	train_cfg: The extra settings of ImageClassifier during training. In ImageClassifier, we mainly use it to specify batch augmentation settings, like Mixup and CutMix. See the documentation for more details.

Following is the model primitive config of the ResNet50 config file in configs/_base_/models/resnet50.py [https://github.com/open-mmlab/mmpretrain/blob/main/configs/_base_/models/resnet50.py]:

model = dict(
 type='ImageClassifier', # The type of the main model (here is for image classification task).
 backbone=dict(
 type='ResNet', # The type of the backbone module.
 # All fields except `type` come from the __init__ method of class `ResNet`
 # and you can find them from https://mmpretrain.readthedocs.io/en/latest/api/generated/mmpretrain.models.backbones.ResNet.html
 depth=50,
 num_stages=4,
 out_indices=(3,),
 frozen_stages=-1,
 style='pytorch'),
 neck=dict(type='GlobalAveragePooling'), # The type of the neck module.
 head=dict(
 type='LinearClsHead', # The type of the classification head module.
 # All fields except `type` come from the __init__ method of class `LinearClsHead`
 # and you can find them from https://mmpretrain.readthedocs.io/en/latest/api/generated/mmpretrain.models.heads.LinearClsHead.html
 num_classes=1000,
 in_channels=2048,
 loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))

Data settings

This primitive config file includes information to construct the dataloader and evaluator:

	data_preprocessor: Model input preprocessing configuration, same as model.data_preprocessor but with lower priority.

	train_evaluator | val_evaluator | test_evaluator: To build the evaluator or metrics, refer to the tutorial.

	train_dataloader | val_dataloader | test_dataloader: The settings of dataloaders

	batch_size: The batch size of each GPU.

	num_workers: The number of workers to fetch data of each GPU.

	sampler: The settings of the sampler.

	persistent_workers: Whether to persistent workers after finishing one epoch.

	dataset: The settings of the dataset.

	type: The type of the dataset, we support CustomDataset, ImageNet and many other datasets, refer to documentation.

	pipeline: The data transform pipeline. You can find how to design a pipeline in this tutorial [https://mmpretrain.readthedocs.io/en/latest/tutorials/data_pipeline.html].

Following is the data primitive config of the ResNet50 config in configs/_base_/datasets/imagenet_bs32.py [https://github.com/open-mmlab/mmpretrain/blob/main/configs/_base_/datasets/imagenet_bs32.py]：

dataset_type = 'ImageNet'
preprocessing configuration
data_preprocessor = dict(
 # Input image data channels in 'RGB' order
 mean=[123.675, 116.28, 103.53], # Input image normalized channel mean in RGB order
 std=[58.395, 57.12, 57.375], # Input image normalized channel std in RGB order
 to_rgb=True, # Whether to flip the channel from BGR to RGB or RGB to BGR
)

train_pipeline = [
 dict(type='LoadImageFromFile'), # read image
 dict(type='RandomResizedCrop', scale=224), # Random scaling and cropping
 dict(type='RandomFlip', prob=0.5, direction='horizontal'), # random horizontal flip
 dict(type='PackInputs'), # prepare images and labels
]

test_pipeline = [
 dict(type='LoadImageFromFile'), # read image
 dict(type='ResizeEdge', scale=256, edge='short'), # Scale the short side to 256
 dict(type='CenterCrop', crop_size=224), # center crop
 dict(type='PackInputs'), # prepare images and labels
]

Construct training set dataloader
train_dataloader = dict(
 batch_size=32, # batchsize per GPU
 num_workers=5, # Number of workers to fetch data per GPU
 dataset=dict(# training dataset
 type=dataset_type,
 data_root='data/imagenet',
 ann_file='meta/train.txt',
 data_prefix='train',
 pipeline=train_pipeline),
 sampler=dict(type='DefaultSampler', shuffle=True), # default sampler
 persistent_workers=True, # Whether to keep the process, can shorten the preparation time of each epoch
)

Construct the validation set dataloader
val_dataloader = dict(
 batch_size=32,
 num_workers=5,
 dataset=dict(
 type=dataset_type,
 data_root='data/imagenet',
 ann_file='meta/val.txt',
 data_prefix='val',
 pipeline=test_pipeline),
 sampler=dict(type='DefaultSampler', shuffle=False),
 persistent_workers=True,
)
The settings of the evaluation metrics for validation. We use the top1 and top5 accuracy here.
val_evaluator = dict(type='Accuracy', topk=(1, 5))

test_dataloader = val_dataloader # The settings of the dataloader for the test dataset, which is the same as val_dataloader
test_evaluator = val_evaluator # The settings of the evaluation metrics for test, which is the same as val_evaluator

Note

The data preprocessor can be defined either in the subfield of model, or a using the data_preprocessor definition here, if both of them exist, use the model.data_preprocessor configuration.

Schedule settings

This primitive config file mainly contains training strategy settings and the settings of training, val and
test loops:

	optim_wrapper: The settings of the optimizer wrapper. We use the optimizer wrapper to customize the
optimization process.

	optimizer: Supports all pytorch optimizers, refers to the relevant MMEngine documentation [https://mmengine.readthedocs.io/en/latest/tutorials/optim_wrapper.html].

	paramwise_cfg: To set different optimization arguments according to the parameters’ type or name, refer to the relevant learning policy documentation.

	accumulative_counts: Optimize parameters after several backward steps instead of one backward step. You
can use it to simulate large batch size by small batch size.

	param_scheduler: Optimizer parameters policy. You can use it to specify learning rate and momentum curves during training. See the documentation [https://mmengine.readthedocs.io/en/latest/tutorials/param_scheduler.html] in MMEngine for more details.

	train_cfg | val_cfg | test_cfg: The settings of the training, validation and test loops, refer to the relevant MMEngine documentation [https://mmengine.readthedocs.io/en/latest/design/runner.html].

Following is the schedule primitive config of the ResNet50 config in configs/_base_/datasets/imagenet_bs32.py [https://github.com/open-mmlab/mmpretrain/blob/main/configs/_base_/datasets/imagenet_bs32.py]：

optim_wrapper = dict(
 # Use SGD optimizer to optimize parameters.
 optimizer=dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001))

The tuning strategy of the learning rate.
The 'MultiStepLR' means to use multiple steps policy to schedule the learning rate (LR).
param_scheduler = dict(
 type='MultiStepLR', by_epoch=True, milestones=[30, 60, 90], gamma=0.1)

Training configuration, iterate 100 epochs, and perform validation after every training epoch.
'by_epoch=True' means to use `EpochBaseTrainLoop`, 'by_epoch=False' means to use IterBaseTrainLoop.
train_cfg = dict(by_epoch=True, max_epochs=100, val_interval=1)
Use the default val loop settings.
val_cfg = dict()
Use the default test loop settings.
test_cfg = dict()

This schedule is for the total batch size 256.
If you use a different total batch size, like 512 and enable auto learning rate scaling.
We will scale up the learning rate to 2 times.
auto_scale_lr = dict(base_batch_size=256)

Runtime settings

This part mainly includes saving the checkpoint strategy, log configuration, training parameters, breakpoint weight path, working directory, etc.

Here is the runtime primitive config file ‘configs/base/default_runtime.py’ [https://github.com/open-mmlab/mmpretrain/blob/main/configs/_base_/default_runtime.py] file used by almost all configs:

defaults to use registries in mmpretrain
default_scope = 'mmpretrain'

configure default hooks
default_hooks = dict(
 # record the time of every iteration.
 timer=dict(type='IterTimerHook'),

 # print log every 100 iterations.
 logger=dict(type='LoggerHook', interval=100),

 # enable the parameter scheduler.
 param_scheduler=dict(type='ParamSchedulerHook'),

 # save checkpoint per epoch.
 checkpoint=dict(type='CheckpointHook', interval=1),

 # set sampler seed in a distributed environment.
 sampler_seed=dict(type='DistSamplerSeedHook'),

 # validation results visualization, set True to enable it.
 visualization=dict(type='VisualizationHook', enable=False),
)

configure environment
env_cfg = dict(
 # whether to enable cudnn benchmark
 cudnn_benchmark=False,

 # set multi-process parameters
 mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),

 # set distributed parameters
 dist_cfg=dict(backend='nccl'),
)

set visualizer
vis_backends = [dict(type='LocalVisBackend')] # use local HDD backend
visualizer = dict(
 type='UniversalVisualizer', vis_backends=vis_backends, name='visualizer')

set log level
log_level = 'INFO'

load from which checkpoint
load_from = None

whether to resume training from the loaded checkpoint
resume = False

Inherit and Modify Config File

For easy understanding, we recommend contributors inherit from existing config files. But do not abuse the
inheritance. Usually, for all config files, we recommend the maximum inheritance level is 3.

For example, if your config file is based on ResNet with some other modification, you can first inherit the
basic ResNet structure, dataset and other training settings by specifying _base_ ='./resnet50_8xb32_in1k.py'
(The path relative to your config file), and then modify the necessary parameters in the config file. A more
specific example, now we want to use almost all configs in configs/resnet/resnet50_8xb32_in1k.py, but using
CutMix train batch augment and changing the number of training epochs from 100 to 300, modify when to decay
the learning rate, and modify the dataset path, you can create a new config file
configs/resnet/resnet50_8xb32-300e_in1k.py with content as below:

create this file under 'configs/resnet/' folder
base = './resnet50_8xb32_in1k.py'

using CutMix batch augment
model = dict(
 train_cfg=dict(
 augments=dict(type='CutMix', alpha=1.0)
)
)

trains more epochs
train_cfg = dict(max_epochs=300, val_interval=10) # Train for 300 epochs, evaluate every 10 epochs
param_scheduler = dict(step=[150, 200, 250]) # The learning rate adjustment has also changed

Use your own dataset directory
train_dataloader = dict(
 dataset=dict(data_root='mydata/imagenet/train'),
)
val_dataloader = dict(
 batch_size=64, # No back-propagation during validation, larger batch size can be used
 dataset=dict(data_root='mydata/imagenet/val'),
)
test_dataloader = dict(
 batch_size=64, # No back-propagation during test, larger batch size can be used
 dataset=dict(data_root='mydata/imagenet/val'),
)

Use intermediate variables in configs

Some intermediate variables are used in the configuration file. The intermediate variables make the configuration file clearer and easier to modify.

For example, train_pipeline / test_pipeline is the intermediate variable of the data pipeline. We first need to define train_pipeline / test_pipeline, and then pass them to train_dataloader / test_dataloader. If you want to modify the size of the input image during training and testing, you need to modify the intermediate variables of train_pipeline / test_pipeline.

bgr_mean = [103.53, 116.28, 123.675] # mean in BGR order
train_pipeline = [
 dict(type='LoadImageFromFile'),
 dict(type='RandomResizedCrop', scale=224, backend='pillow', interpolation='bicubic'),
 dict(type='RandomFlip', prob=0.5, direction='horizontal'),
 dict(
 type='RandAugment',
 policies='timm_increasing',
 num_policies=2,
 total_level=10,
 magnitude_level=6,
 magnitude_std=0.5,
 hparams=dict(pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
 dict(type='PackInputs'),
]

test_pipeline = [
 dict(type='LoadImageFromFile'),
 dict(type='ResizeEdge', scale=236, edge='short', backend='pillow', interpolation='bicubic'),
 dict(type='CenterCrop', crop_size=224),
 dict(type='PackInputs')
]

train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(dataset=dict(pipeline=val_pipeline))
test_dataloader = dict(dataset=dict(pipeline=val_pipeline))

Ignore some fields in the base configs

Sometimes, you need to set _delete_=True to ignore some domain content in the basic configuration file. You can refer to the documentation in MMEngine [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html] for more instructions.

The following is an example. If you want to use cosine schedule in the above ResNet50 case, just using inheritance and directly modifying it will report get unexpected keyword 'step' error, because the 'step' field of the basic config in param_scheduler domain information is reserved, and you need to add _delete_ =True to ignore the content of param_scheduler related fields in the basic configuration file:

base = '../../configs/resnet/resnet50_8xb32_in1k.py'

the learning rate scheduler
param_scheduler = dict(type='CosineAnnealingLR', by_epoch=True, _delete_=True)

Use some fields in the base configs

Sometimes, you may refer to some fields in the _base_ config, to avoid duplication of definitions. You can refer to MMEngine [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html] for some more instructions.

The following is an example of using auto augment in the training data preprocessing pipeline, refer to configs/resnest/resnest50_32xb64_in1k.py [https://github.com/open-mmlab/mmpretrain/blob/main/configs/resnest/resnest50_32xb64_in1k.py]. When defining train_pipeline, just add the definition file name of auto augment to _base_, and then use _base_.auto_increasing_policies to reference the variables in the primitive config:

base = [
 '../_base_/models/resnest50.py', '../_base_/datasets/imagenet_bs64.py',
 '../_base_/default_runtime.py', './_randaug_policies.py',
]

train_pipeline = [
 dict(type='LoadImageFromFile'),
 dict(
 type='RandAugment',
 policies=_base_.policies, # This uses the `policies` parameter in the primitive config.
 num_policies=2,
 magnitude_level=12),
 dict(type='EfficientNetRandomCrop', scale=224, backend='pillow'),
 dict(type='RandomFlip', prob=0.5, direction='horizontal'),
 dict(type='ColorJitter', brightness=0.4, contrast=0.4, saturation=0.4),
 dict(
 type='Lighting',
 eigval=EIGVAL,
 eigvec=EIGVEC,
 alphastd=0.1,
 to_rgb=False),
 dict(type='PackInputs'),
]

train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

Modify config in command

When you use the script “tools/train.py” or “tools/test.py” to submit tasks or use some other tools, they can directly modify the content of the configuration file used by specifying the --cfg-options argument.

	Update config keys of dict chains.

The config options can be specified following the order of the dict keys in the original config.
For example, --cfg-options model.backbone.norm_eval=False changes the all BN modules in model backbones to train mode.

	Update keys inside a list of configs.

Some config dicts are composed as a list in your config. For example, the training pipeline data.train.pipeline is normally a list
e.g. [dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), ...]. If you want to change 'flip_prob=0.5' to 'flip_prob=0.0' in the pipeline,
you may specify --cfg-options data.train.pipeline.1.flip_prob=0.0.

	Update values of list/tuples.

If the value to be updated is a list or a tuple. For example, the config file normally sets val_evaluator = dict(type='Accuracy', topk=(1, 5)). If you want to change the field topk, you may specify --cfg-options val_evaluator.topk="(1,3)". Note that the quotation mark ” is necessary to support list/tuple data types and that NO white space is allowed inside the quotation marks in the specified value.

Prepare Dataset

CustomDataset

CustomDataset is a general dataset class for you to use your own datasets. To use CustomDataset, you need to organize your dataset files according to the following two formats:

Subfolder Format

In this format, you only need to re-organize your dataset folder and place all samples in one folder without
creating any annotation files.

For supervised tasks (with with_label=True), we use the name of sub-folders as the categories names, as
shown in the below example, class_x and class_y will be recognized as the categories names.

data_prefix/
├── class_x
│ ├── xxx.png
│ ├── xxy.png
│ └── ...
│ └── xxz.png
└── class_y
 ├── 123.png
 ├── nsdf3.png
 ├── ...
 └── asd932_.png

For unsupervised tasks (with with_label=False), we directly load all sample files under the specified folder:

data_prefix/
├── folder_1
│ ├── xxx.png
│ ├── xxy.png
│ └── ...
├── 123.png
├── nsdf3.png
└── ...

Assume you want to use it as the training dataset, and the below is the configurations in your config file.

train_dataloader = dict(
 ...
 # Training dataset configurations
 dataset=dict(
 type='CustomDataset',
 data_prefix='path/to/data_prefix',
 with_label=True, # or False for unsupervised tasks
 pipeline=...
)
)

Note

If you want to use this format, do not specify ann_file, or specify ann_file=''.

And please note that the subfolder format requires a folder scanning which may cause a slower initialization,
especially for large datasets or slow file IO.

Text Annotation File Format

In this format, we use a text annotation file to store image file paths and the corespondding category
indices.

For supervised tasks (with with_label=True), the annotation file should include the file path and the
category index of one sample in one line and split them by a space, as below:

All these file paths can be absolute paths, or paths relative to the data_prefix.

folder_1/xxx.png 0
folder_1/xxy.png 1
123.png 4
nsdf3.png 3
...

Note

The index numbers of categories start from 0. And the value of ground-truth labels should fall in range [0, num_classes - 1].

In addition, please use the classes field in the dataset settings to specify the name of every category.

For unsupervised tasks (with with_label=False), the annotation file only need to include the file path of
one sample in one line, as below:

folder_1/xxx.png
folder_1/xxy.png
123.png
nsdf3.png
...

Assume the entire dataset folder is as below:

data_root
├── meta
│ ├── test.txt # The annotation file for the test dataset
│ ├── train.txt # The annotation file for the training dataset
│ └── val.txt # The annotation file for the validation dataset.
├── train
│ ├── 123.png
│ ├── folder_1
│ │ ├── xxx.png
│ │ └── xxy.png
│ └── nsdf3.png
├── test
└── val

Here is an example dataset settings in config files:

Training dataloader configurations
train_dataloader = dict(
 dataset=dict(
 type='CustomDataset',
 data_root='path/to/data_root', # The common prefix of both `ann_flie` and `data_prefix`.
 ann_file='meta/train.txt', # The path of annotation file relative to the data_root.
 data_prefix='train', # The prefix of file paths in the `ann_file`, relative to the data_root.
 with_label=True, # or False for unsupervised tasks
 classes=['A', 'B', 'C', 'D', ...], # The name of every category.
 pipeline=..., # The transformations to process the dataset samples.
)
 ...
)

Note

For a complete example about how to use the CustomDataset, please see How to Pretrain with Custom Dataset

ImageNet

ImageNet has multiple versions, but the most commonly used one is ILSVRC 2012 [http://www.image-net.org/challenges/LSVRC/2012/]. It can be accessed with the following steps.

Download by MIM

MIM supports downloading from OpenXlab [https://openxlab.org.cn/datasets] and preprocessing ImageNet dataset with one command line.

You need to register an account at OpenXlab official website [https://openxlab.org.cn/datasets] and login by CLI.

install OpenXlab CLI tools
pip install -U openxlab
log in OpenXLab
openxlab login
download and preprocess by MIM, better to execute in $MMPreTrain directory.
mim download mmpretrain --dataset imagenet1k

Download form Official Source

	Register an account and login to the download page [http://www.image-net.org/download-images].

	Find download links for ILSVRC2012 and download the following two files

	ILSVRC2012_img_train.tar (~138GB)

	ILSVRC2012_img_val.tar (~6.3GB)

	Untar the downloaded files

The Directory Structrue of the ImageNet dataset

We support two ways of organizing the ImageNet dataset: Subfolder Format and Text Annotation File Format.

Subfolder Format

We have provided a sample, which you can download and extract from this link [https://download.openmmlab.com/mmpretrain/datasets/imagenet_1k.zip]. The directory structure of the dataset should be as below:

data/imagenet/
├── train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── n01440764_10029.JPEG
│ │ ├── n01440764_10040.JPEG
│ │ ├── n01440764_10042.JPEG
│ │ ├── n01440764_10043.JPEG
│ │ └── n01440764_10048.JPEG
│ ├── ...
├── val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ILSVRC2012_val_00003014.JPEG
│ │ └── ...
│ ├── ...

Text Annotation File Format

You can download and untar the meta data from this link [https://download.openmmlab.com/mmclassification/datasets/imagenet/meta/caffe_ilsvrc12.tar.gz]. And re-organize the dataset as below:

data/imagenet/
├── meta/
│ ├── train.txt
│ ├── test.txt
│ └── val.txt
├── train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── n01440764_10029.JPEG
│ │ ├── n01440764_10040.JPEG
│ │ ├── n01440764_10042.JPEG
│ │ ├── n01440764_10043.JPEG
│ │ └── n01440764_10048.JPEG
│ ├── ...
├── val/
│ ├── ILSVRC2012_val_00000001.JPEG
│ ├── ILSVRC2012_val_00000002.JPEG
│ ├── ILSVRC2012_val_00000003.JPEG
│ ├── ILSVRC2012_val_00000004.JPEG
│ ├── ...

Configuration

Once your dataset is organized in the way described above, you can use the ImageNet dataset with the below configurations:

train_dataloader = dict(
 ...
 # Training dataset configurations
 dataset=dict(
 type='ImageNet',
 data_root='data/imagenet',
 split='train',
 pipeline=...,
)
)

val_dataloader = dict(
 ...
 # Validation dataset configurations
 dataset=dict(
 type='ImageNet',
 data_root='data/imagenet',
 split='val',
 pipeline=...,
)
)

test_dataloader = val_dataloader

Supported Image Classification Datasets

	Datasets

	split

	HomePage

	Calthch101(data_root[, split, pipeline, …])

	[“train”, “test”]

	Caltech 101 [https://data.caltech.edu/records/mzrjq-6wc02] Dataset.

	CIFAR10(data_root[, split, pipeline, …])

	[“train”, “test”]

	CIFAR10 [https://www.cs.toronto.edu/~kriz/cifar.html] Dataset.

	CIFAR100(data_root[, split, pipeline, …])

	[“train”, “test”]

	CIFAR100 [https://www.cs.toronto.edu/~kriz/cifar.html] Dataset.

	CUB(data_root[, split, pipeline, …])

	[“train”, “test”]

	CUB-200-2011 [http://www.vision.caltech.edu/datasets/cub_200_2011/] Dataset.

	DTD(data_root[, split, pipeline, …])

	[“train”, “val”, “tranval”, “test”]

	Describable Texture Dataset (DTD) [https://www.robots.ox.ac.uk/~vgg/data/dtd/] Dataset.

	FashionMNIST (data_root[, split, pipeline, …])

	[“train”, “test”]

	Fashion-MNIST [https://github.com/zalandoresearch/fashion-mnist] Dataset.

	FGVCAircraft(data_root[, split, pipeline, …])

	[“train”, “val”, “tranval”, “test”]

	FGVC Aircraft [https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/] Dataset.

	Flowers102(data_root[, split, pipeline, …])

	[“train”, “val”, “tranval”, “test”]

	Oxford 102 Flower [https://www.robots.ox.ac.uk/~vgg/data/flowers/102/] Dataset.

	Food101(data_root[, split, pipeline, …])

	[“train”, “test”]

	Food101 [https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/] Dataset.

	MNIST (data_root[, split, pipeline, …])

	[“train”, “test”]

	MNIST [http://yann.lecun.com/exdb/mnist/] Dataset.

	OxfordIIITPet(data_root[, split, pipeline, …])

	[“tranval”, test”]

	Oxford-IIIT Pets [https://www.robots.ox.ac.uk/~vgg/data/pets/] Dataset.

	Places205(data_root[, pipeline, …])

	-

	Places205 [http://places.csail.mit.edu/downloadData.html] Dataset.

	StanfordCars(data_root[, split, pipeline, …])

	[“train”, “test”]

	Stanford Cars [https://ai.stanford.edu/~jkrause/cars/car_dataset.html] Dataset.

	SUN397(data_root[, split, pipeline, …])

	[“train”, “test”]

	SUN397 [https://vision.princeton.edu/projects/2010/SUN/] Dataset.

	VOC(data_root[, image_set_path, pipeline, …])

	[“train”, “val”, “tranval”, “test”]

	Pascal VOC [http://host.robots.ox.ac.uk/pascal/VOC/] Dataset.

Some dataset homepage links may be unavailable, and you can download datasets through OpenXLab [https://openxlab.org.cn/datasets], such as Stanford Cars [https://openxlab.org.cn/datasets/OpenDataLab/Stanford_Cars].

Supported Multi-modality Datasets

	Datasets

	split

	HomePage

	RefCOCO(data_root, ann_file, data_prefix, split_file[, split, …])

	[“train”, “val”, “test”]

	RefCOCO [https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco.zip] Dataset.

Some dataset homepage links may be unavailable, and you can download datasets through OpenDataLab [https://opendatalab.com/], such as RefCOCO [https://opendatalab.com/RefCOCO/download].

OpenMMLab 2.0 Standard Dataset

In order to facilitate the training of multi-task algorithm models, we unify the dataset interfaces of different tasks. OpenMMLab has formulated the OpenMMLab 2.0 Dataset Format Specification. When starting a trainning task, the users can choose to convert their dataset annotation into the specified format, and use the algorithm library of OpenMMLab to perform algorithm training and testing based on the data annotation file.

The OpenMMLab 2.0 Dataset Format Specification stipulates that the annotation file must be in json or yaml, yml, pickle or pkl format; the dictionary stored in the annotation file must contain metainfo and data_list fields, The value of metainfo is a dictionary, which contains the meta information of the dataset; and the value of data_list is a list, each element in the list is a dictionary, the dictionary defines a raw data, each raw data contains a or several training/testing samples.

The following is an example of a JSON annotation file (in this example each raw data contains only one train/test sample):

{
 'metainfo':
 {
 'classes': ('cat', 'dog'), # the category index of 'cat' is 0 and 'dog' is 1.
 ...
 },
 'data_list':
 [
 {
 'img_path': "xxx/xxx_0.jpg",
 'gt_label': 0,
 ...
 },
 {
 'img_path': "xxx/xxx_1.jpg",
 'gt_label': 1,
 ...
 },
 ...
]
}

Assume you want to use the training dataset and the dataset is stored as the below structure:

data
├── annotations
│ ├── train.json
├── train
│ ├── xxx/xxx_0.jpg
│ ├── xxx/xxx_1.jpg
│ ├── ...

Build from the following dictionaries:

train_dataloader = dict(
 ...
 dataset=dict(
 type='BaseDataset',
 data_root='data',
 ann_file='annotations/train.json',
 data_prefix='train/',
 pipeline=...,
)
)

Other Datasets

To find more datasets supported by MMPretrain, and get more configurations of the above datasets, please see the dataset documentation.

To implement your own dataset class for some special formats, please see the Adding New Dataset.

Dataset Wrappers

The following datawrappers are supported in MMEngine, you can refer to MMEngine tutorial [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/basedataset.html] to learn how to use it.

	ConcatDataset [https://mmengine.readthedocs.io/en/latest/api/generated/mmengine.dataset.ConcatDataset.html#mmengine.dataset.ConcatDataset]

	RepeatDataset [https://mmengine.readthedocs.io/en/latest/api/generated/mmengine.dataset.RepeatDataset.html#mmengine.dataset.RepeatDataset]

	ClassBalancedDataset [https://mmengine.readthedocs.io/en/latest/api/generated/mmengine.dataset.ClassBalancedDataset.html#mmengine.dataset.ClassBalancedDataset]

The MMPretrain also support KFoldDataset, please use it with tools/kfold-cross-valid.py.

Inference with existing models

This tutorial will show how to use the following APIs：

	list_models: List available model names in MMPreTrain.

	get_model: Get a model from model name or model config.

	inference_model: Inference a model with the correspondding
inferencer. It’s a shortcut for a quick start, and for advanced usage, please use the below inferencer
directly.

	Inferencers:

	ImageClassificationInferencer:
Perform image classification on the given image.

	ImageRetrievalInferencer:
Perform image-to-image retrieval from the given image on a given image set.

	ImageCaptionInferencer:
Generate a caption on the given image.

	VisualQuestionAnsweringInferencer:
Answer a question according to the given image.

	VisualGroundingInferencer:
Locate an object from the description on the given image.

	TextToImageRetrievalInferencer:
Perform text-to-image retrieval from the given description on a given image set.

	ImageToTextRetrievalInferencer:
Perform image-to-text retrieval from the given image on a series of text.

	NLVRInferencer:
Perform Natural Language for Visual Reasoning on a given image-pair and text.

	FeatureExtractor:
Extract features from the image files by a vision backbone.

List available models

list all the models in MMPreTrain.

>>> from mmpretrain import list_models
>>> list_models()
['barlowtwins_resnet50_8xb256-coslr-300e_in1k',
 'beit-base-p16_beit-in21k-pre_3rdparty_in1k',
 ...]

list_models supports Unix filename pattern matching, you can use ** * ** to match any character.

>>> from mmpretrain import list_models
>>> list_models("*convnext-b*21k")
['convnext-base_3rdparty_in21k',
 'convnext-base_in21k-pre-3rdparty_in1k-384px',
 'convnext-base_in21k-pre_3rdparty_in1k']

You can use the list_models method of inferencers to get the available models of the correspondding tasks.

>>> from mmpretrain import ImageCaptionInferencer
>>> ImageCaptionInferencer.list_models()
['blip-base_3rdparty_caption',
 'blip2-opt2.7b_3rdparty-zeroshot_caption',
 'flamingo_3rdparty-zeroshot_caption',
 'ofa-base_3rdparty-finetuned_caption']

Get a model

you can use get_model get the model.

>>> from mmpretrain import get_model

Get model without loading pre-trained weight.
>>> model = get_model("convnext-base_in21k-pre_3rdparty_in1k")

Get model and load the default checkpoint.
>>> model = get_model("convnext-base_in21k-pre_3rdparty_in1k", pretrained=True)

Get model and load the specified checkpoint.
>>> model = get_model("convnext-base_in21k-pre_3rdparty_in1k", pretrained="your_local_checkpoint_path")

Get model with extra initialization arguments, for example, modify the num_classes in head.
>>> model = get_model("convnext-base_in21k-pre_3rdparty_in1k", head=dict(num_classes=10))

Another example, remove the neck and head, and output from stage 1, 2, 3 in backbone
>>> model_headless = get_model("resnet18_8xb32_in1k", head=None, neck=None, backbone=dict(out_indices=(1, 2, 3)))

The obtained model is a usual PyTorch module.

>>> import torch
>>> from mmpretrain import get_model
>>> model = get_model('convnext-base_in21k-pre_3rdparty_in1k', pretrained=True)
>>> x = torch.rand((1, 3, 224, 224))
>>> y = model(x)
>>> print(type(y), y.shape)
<class 'torch.Tensor'> torch.Size([1, 1000])

Inference on given images

Here is an example to inference an image [https://github.com/open-mmlab/mmpretrain/raw/main/demo/demo.JPEG] by the ResNet-50 pre-trained classification model.

>>> from mmpretrain import inference_model
>>> image = 'https://github.com/open-mmlab/mmpretrain/raw/main/demo/demo.JPEG'
>>> # If you have no graphical interface, please set `show=False`
>>> result = inference_model('resnet50_8xb32_in1k', image, show=True)
>>> print(result['pred_class'])
sea snake

The inference_model API is only for demo and cannot keep the model instance or inference on multiple
samples. You can use the inferencers for multiple calling.

>>> from mmpretrain import ImageClassificationInferencer
>>> image = 'https://github.com/open-mmlab/mmpretrain/raw/main/demo/demo.JPEG'
>>> inferencer = ImageClassificationInferencer('resnet50_8xb32_in1k')
>>> # Note that the inferencer output is a list of result even if the input is a single sample.
>>> result = inferencer('https://github.com/open-mmlab/mmpretrain/raw/main/demo/demo.JPEG')[0]
>>> print(result['pred_class'])
sea snake
>>>
>>> # You can also use is for multiple images.
>>> image_list = ['demo/demo.JPEG', 'demo/bird.JPEG'] * 16
>>> results = inferencer(image_list, batch_size=8)
>>> print(len(results))
32
>>> print(results[1]['pred_class'])
house finch, linnet, Carpodacus mexicanus

Usually, the result for every sample is a dictionary. For example, the image classification result is a dictionary containing pred_label, pred_score, pred_scores and pred_class as follows:

{
 "pred_label": 65,
 "pred_score": 0.6649366617202759,
 "pred_class":"sea snake",
 "pred_scores": array([..., 0.6649366617202759, ...], dtype=float32)
}

You can configure the inferencer by arguments, for example, use your own config file and checkpoint to
inference images by CUDA.

>>> from mmpretrain import ImageClassificationInferencer
>>> image = 'https://github.com/open-mmlab/mmpretrain/raw/main/demo/demo.JPEG'
>>> config = 'configs/resnet/resnet50_8xb32_in1k.py'
>>> checkpoint = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb32_in1k_20210831-ea4938fc.pth'
>>> inferencer = ImageClassificationInferencer(model=config, pretrained=checkpoint, device='cuda')
>>> result = inferencer(image)[0]
>>> print(result['pred_class'])
sea snake

Inference by a Gradio demo

We also provide a gradio demo for all supported tasks and you can find it in projects/gradio_demo/launch.py [https://github.com/open-mmlab/mmpretrain/blob/main/projects/gradio_demo/launch.py].

Please install gradio by pip install -U gradio at first.

Here is the interface preview:

Extract Features From Image

Compared with model.extract_feat, FeatureExtractor is used to extract features from the image files directly, instead of a batch of tensors.
In a word, the input of model.extract_feat is torch.Tensor, the input of FeatureExtractor is images.

>>> from mmpretrain import FeatureExtractor, get_model
>>> model = get_model('resnet50_8xb32_in1k', backbone=dict(out_indices=(0, 1, 2, 3)))
>>> extractor = FeatureExtractor(model)
>>> features = extractor('https://github.com/open-mmlab/mmpretrain/raw/main/demo/demo.JPEG')[0]
>>> features[0].shape, features[1].shape, features[2].shape, features[3].shape
(torch.Size([256]), torch.Size([512]), torch.Size([1024]), torch.Size([2048]))

Train

In this tutorial, we will introduce how to use the scripts provided in MMPretrain to start a training task. If
you need, we also have some practice examples about how to pretrain with custom dataset
and how to finetune with custom dataset.

Train with your PC

You can use tools/train.py to train a model on a single machine with a CPU and optionally a GPU.

Here is the full usage of the script:

python tools/train.py ${CONFIG_FILE} [ARGS]

Note

By default, MMPretrain prefers GPU to CPU. If you want to train a model on CPU, please empty CUDA_VISIBLE_DEVICES or set it to -1 to make GPU invisible to the program.

CUDA_VISIBLE_DEVICES=-1 python tools/train.py ${CONFIG_FILE} [ARGS]

	ARGS

	Description

	CONFIG_FILE

	The path to the config file.

	--work-dir WORK_DIR

	The target folder to save logs and checkpoints. Defaults to a folder with the same name of the config file under ./work_dirs.

	--resume [RESUME]

	Resume training. If specify a path, resume from it, while if not specify, try to auto resume from the latest checkpoint.

	--amp

	Enable automatic-mixed-precision training.

	--no-validate

	Not suggested. Disable checkpoint evaluation during training.

	--auto-scale-lr

	Auto scale the learning rate according to the actual batch size and the original batch size.

	--no-pin-memory

	Whether to disable the pin_memory option in dataloaders.

	--no-persistent-workers

	Whether to disable the persistent_workers option in dataloaders.

	--cfg-options CFG_OPTIONS

	Override some settings in the used config, the key-value pair in xxx=yyy format will be merged into the config file. If the value to be overwritten is a list, it should be of the form of either key="[a,b]" or key=a,b. The argument also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]". Note that the quotation marks are necessary and that no white space is allowed.

	--launcher {none,pytorch,slurm,mpi}

	Options for job launcher.

Train with multiple GPUs

We provide a shell script to start a multi-GPUs task with torch.distributed.launch.

bash ./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [PY_ARGS]

	ARGS

	Description

	CONFIG_FILE

	The path to the config file.

	GPU_NUM

	The number of GPUs to be used.

	[PY_ARGS]

	The other optional arguments of tools/train.py, see here.

You can also specify extra arguments of the launcher by environment variables. For example, change the
communication port of the launcher to 29666 by the below command:

PORT=29666 bash ./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [PY_ARGS]

If you want to startup multiple training jobs and use different GPUs, you can launch them by specifying
different ports and visible devices.

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 bash ./tools/dist_train.sh ${CONFIG_FILE1} 4 [PY_ARGS]
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 bash ./tools/dist_train.sh ${CONFIG_FILE2} 4 [PY_ARGS]

Train with multiple machines

Multiple machines in the same network

If you launch a training job with multiple machines connected with ethernet, you can run the following commands:

On the first machine:

NNODES=2 NODE_RANK=0 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR bash tools/dist_train.sh $CONFIG $GPUS

On the second machine:

NNODES=2 NODE_RANK=1 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR bash tools/dist_train.sh $CONFIG $GPUS

Comparing with multi-GPUs in a single machine, you need to specify some extra environment variables:

	ENV_VARS

	Description

	NNODES

	The total number of machines.

	NODE_RANK

	The index of the local machine.

	PORT

	The communication port, it should be the same in all machines.

	MASTER_ADDR

	The IP address of the master machine, it should be the same in all machines.

Usually it is slow if you do not have high speed networking like InfiniBand.

Multiple machines managed with slurm

If you run MMPretrain on a cluster managed with slurm [https://slurm.schedmd.com/], you can use the script tools/slurm_train.sh.

[ENV_VARS] ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR} [PY_ARGS]

Here are the arguments description of the script.

	ARGS

	Description

	PARTITION

	The partition to use in your cluster.

	JOB_NAME

	The name of your job, you can name it as you like.

	CONFIG_FILE

	The path to the config file.

	WORK_DIR

	The target folder to save logs and checkpoints.

	[PY_ARGS]

	The other optional arguments of tools/train.py, see here.

Here are the environment variables can be used to configure the slurm job.

	ENV_VARS

	Description

	GPUS

	The number of GPUs to be used. Defaults to 8.

	GPUS_PER_NODE

	The number of GPUs to be allocated per node..

	CPUS_PER_TASK

	The number of CPUs to be allocated per task (Usually one GPU corresponds to one task). Defaults to 5.

	SRUN_ARGS

	The other arguments of srun. Available options can be found here [https://slurm.schedmd.com/srun.html].

Test

For image classification task and image retrieval task, you could test your model after training.

Test with your PC

You can use tools/test.py to test a model on a single machine with a CPU and optionally a GPU.

Here is the full usage of the script:

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [ARGS]

Note

By default, MMPretrain prefers GPU to CPU. If you want to test a model on CPU, please empty CUDA_VISIBLE_DEVICES or set it to -1 to make GPU invisible to the program.

CUDA_VISIBLE_DEVICES=-1 python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [ARGS]

	ARGS

	Description

	CONFIG_FILE

	The path to the config file.

	CHECKPOINT_FILE

	The path to the checkpoint file (It can be a http link, and you can find checkpoints here [https://mmpretrain.readthedocs.io/en/latest/modelzoo_statistics.html]).

	--work-dir WORK_DIR

	The directory to save the file containing evaluation metrics.

	--out OUT

	The path to save the file containing test results.

	--out-item OUT_ITEM

	To specify the content of the test results file, and it can be “pred” or “metrics”. If “pred”, save the outputs of the model for offline evaluation. If “metrics”, save the evaluation metrics. Defaults to “pred”.

	--cfg-options CFG_OPTIONS

	Override some settings in the used config, the key-value pair in xxx=yyy format will be merged into the config file. If the value to be overwritten is a list, it should be of the form of either key="[a,b]" or key=a,b. The argument also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]". Note that the quotation marks are necessary and that no white space is allowed.

	--show-dir SHOW_DIR

	The directory to save the result visualization images.

	--show

	Visualize the prediction result in a window.

	--interval INTERVAL

	The interval of samples to visualize.

	--wait-time WAIT_TIME

	The display time of every window (in seconds). Defaults to 1.

	--no-pin-memory

	Whether to disable the pin_memory option in dataloaders.

	--tta

	Whether to enable the Test-Time-Aug (TTA). If the config file has tta_pipeline and tta_model fields, use them to determine the TTA transforms and how to merge the TTA results. Otherwise, use flip TTA by averaging classification score.

	--launcher {none,pytorch,slurm,mpi}

	Options for job launcher.

Test with multiple GPUs

We provide a shell script to start a multi-GPUs task with torch.distributed.launch.

bash ./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [PY_ARGS]

	ARGS

	Description

	CONFIG_FILE

	The path to the config file.

	CHECKPOINT_FILE

	The path to the checkpoint file (It can be a http link, and you can find checkpoints here [https://mmpretrain.readthedocs.io/en/latest/modelzoo_statistics.html]).

	GPU_NUM

	The number of GPUs to be used.

	[PY_ARGS]

	The other optional arguments of tools/test.py, see here.

You can also specify extra arguments of the launcher by environment variables. For example, change the
communication port of the launcher to 29666 by the below command:

PORT=29666 bash ./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [PY_ARGS]

If you want to startup multiple test jobs and use different GPUs, you can launch them by specifying
different port and visible devices.

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 bash ./tools/dist_test.sh ${CONFIG_FILE1} ${CHECKPOINT_FILE} 4 [PY_ARGS]
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 bash ./tools/dist_test.sh ${CONFIG_FILE2} ${CHECKPOINT_FILE} 4 [PY_ARGS]

Test with multiple machines

Multiple machines in the same network

If you launch a test job with multiple machines connected with ethernet, you can run the following commands:

On the first machine:

NNODES=2 NODE_RANK=0 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR bash tools/dist_test.sh $CONFIG $CHECKPOINT_FILE $GPUS

On the second machine:

NNODES=2 NODE_RANK=1 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR bash tools/dist_test.sh $CONFIG $CHECKPOINT_FILE $GPUS

Comparing with multi-GPUs in a single machine, you need to specify some extra environment variables:

	ENV_VARS

	Description

	NNODES

	The total number of machines.

	NODE_RANK

	The index of the local machine.

	PORT

	The communication port, it should be the same in all machines.

	MASTER_ADDR

	The IP address of the master machine, it should be the same in all machines.

Usually it is slow if you do not have high speed networking like InfiniBand.

Multiple machines managed with slurm

If you run MMPretrain on a cluster managed with slurm [https://slurm.schedmd.com/], you can use the script tools/slurm_test.sh.

[ENV_VARS] ./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${CHECKPOINT_FILE} [PY_ARGS]

Here are the arguments description of the script.

	ARGS

	Description

	PARTITION

	The partition to use in your cluster.

	JOB_NAME

	The name of your job, you can name it as you like.

	CONFIG_FILE

	The path to the config file.

	CHECKPOINT_FILE

	The path to the checkpoint file (It can be a http link, and you can find checkpoints here [https://mmpretrain.readthedocs.io/en/latest/modelzoo_statistics.html]).

	[PY_ARGS]

	The other optional arguments of tools/test.py, see here.

Here are the environment variables can be used to configure the slurm job.

	ENV_VARS

	Description

	GPUS

	The number of GPUs to be used. Defaults to 8.

	GPUS_PER_NODE

	The number of GPUs to be allocated per node.

	CPUS_PER_TASK

	The number of CPUs to be allocated per task (Usually one GPU corresponds to one task). Defaults to 5.

	SRUN_ARGS

	The other arguments of srun. Available options can be found here [https://slurm.schedmd.com/srun.html].

Downstream tasks

Detection

For detection tasks, please use MMDetection. First, make sure you have installed MIM [https://github.com/open-mmlab/mim], which is also a project of OpenMMLab.

pip install openmim
mim install 'mmdet>=3.0.0rc0'

Besides, please refer to MMDet for installation [https://mmdetection.readthedocs.io/en/dev-3.x/get_started.html] and data preparation [https://mmdetection.readthedocs.io/en/dev-3.x/user_guides/dataset_prepare.html]

Train

After installation, you can run MMDetection with simple command.

distributed version
bash tools/benchmarks/mmdetection/mim_dist_train_c4.sh ${CONFIG} ${PRETRAIN} ${GPUS}
bash tools/benchmarks/mmdetection/mim_dist_train_fpn.sh ${CONFIG} ${PRETRAIN} ${GPUS}

slurm version
bash tools/benchmarks/mmdetection/mim_slurm_train_c4.sh ${PARTITION} ${CONFIG} ${PRETRAIN}
bash tools/benchmarks/mmdetection/mim_slurm_train_fpn.sh ${PARTITION} ${CONFIG} ${PRETRAIN}

	${CONFIG}: Use config file path in MMDetection directly. And for some algorithms, we also have some
modified config files which can be found in the benchmarks folder under the correspondding algorithm
folder. You can also writing your config file from scratch.

	${PRETRAIN}: the pre-trained model file.

	${GPUS}: The number of GPUs that you want to use to train. We adopt 8 GPUs for detection tasks by default.

Example:

bash ./tools/benchmarks/mmdetection/mim_dist_train_c4.sh \
 configs/byol/benchmarks/mask-rcnn_r50-c4_ms-1x_coco.py \
 https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/byol_resnet50_16xb256-coslr-200e_in1k_20220825-de817331.pth 8

Test

After training, you can also run the command below to test your model.

distributed version
bash tools/benchmarks/mmdetection/mim_dist_test.sh ${CONFIG} ${CHECKPOINT} ${GPUS}

slurm version
bash tools/benchmarks/mmdetection/mim_slurm_test.sh ${PARTITION} ${CONFIG} ${CHECKPOINT}

	${CONFIG}: Use config file name in MMDetection directly. And for some algorithms, we also have some
modified config files which can be found in the benchmarks folder under the correspondding algorithm
folder. You can also writing your config file from scratch.

	${CHECKPOINT}: The fine-tuned detection model that you want to test.

	${GPUS}: The number of GPUs that you want to use to test. We adopt 8 GPUs for detection tasks by default.

Example:

bash ./tools/benchmarks/mmdetection/mim_dist_test.sh \
configs/byol/benchmarks/mask-rcnn_r50_fpn_ms-1x_coco.py \
https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/byol_resnet50_16xb256-coslr-200e_in1k_20220825-de817331.pth 8

Segmentation

For semantic segmentation task, we use MMSegmentation. First, make sure you have installed MIM [https://github.com/open-mmlab/mim], which is also a project of OpenMMLab.

pip install openmim
mim install 'mmsegmentation>=1.0.0rc0'

Besides, please refer to MMSegmentation for installation [https://mmsegmentation.readthedocs.io/en/dev-1.x/get_started.html] and data preparation [https://mmsegmentation.readthedocs.io/en/dev-1.x/user_guides/2_dataset_prepare.html].

Train

After installation, you can run MMSegmentation with simple command.

distributed version
bash tools/benchmarks/mmsegmentation/mim_dist_train.sh ${CONFIG} ${PRETRAIN} ${GPUS}

slurm version
bash tools/benchmarks/mmsegmentation/mim_slurm_train.sh ${PARTITION} ${CONFIG} ${PRETRAIN}

	${CONFIG}: Use config file path in MMSegmentation directly. And for some algorithms, we also have some
modified config files which can be found in the benchmarks folder under the correspondding algorithm
folder. You can also writing your config file from scratch.

	${PRETRAIN}: the pre-trained model file.

	${GPUS}: The number of GPUs that you want to use to train. We adopt 4 GPUs for segmentation tasks by default.

Example:

bash ./tools/benchmarks/mmsegmentation/mim_dist_train.sh \
configs/benchmarks/mmsegmentation/voc12aug/fcn_r50-d8_4xb4-20k_voc12aug-512x512.py \
https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/byol_resnet50_16xb256-coslr-200e_in1k_20220825-de817331.pth 4

Test

After training, you can also run the command below to test your model.

distributed version
bash tools/benchmarks/mmsegmentation/mim_dist_test.sh ${CONFIG} ${CHECKPOINT} ${GPUS}

slurm version
bash tools/benchmarks/mmsegmentation/mim_slurm_test.sh ${PARTITION} ${CONFIG} ${CHECKPOINT}

	${CONFIG}: Use config file name in MMSegmentation directly. And for some algorithms, we also have some
modified config files which can be found in the benchmarks folder under the correspondding algorithm
folder. You can also writing your config file from scratch.

	${CHECKPOINT}: The fine-tuned segmentation model that you want to test.

	${GPUS}: The number of GPUs that you want to use to test. We adopt 4 GPUs for segmentation tasks by default.

Example:

bash ./tools/benchmarks/mmsegmentation/mim_dist_test.sh fcn_r50-d8_4xb4-20k_voc12aug-512x512.py \
https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/byol_resnet50_16xb256-coslr-200e_in1k_20220825-de817331.pth 4

Adding New Dataset

You can write a new dataset class inherited from BaseDataset, and overwrite load_data_list(self),
like CIFAR10 [https://github.com/open-mmlab/mmpretrain/blob/main/mmpretrain/datasets/cifar.py] and ImageNet [https://github.com/open-mmlab/mmpretrain/blob/main/mmpretrain/datasets/imagenet.py].
Typically, this function returns a list, where each sample is a dict, containing necessary data information, e.g., img and gt_label.

Assume we are going to implement a Filelist dataset, which takes filelists for both training and testing. The format of annotation list is as follows:

000001.jpg 0
000002.jpg 1

1. Create Dataset Class

We can create a new dataset in mmpretrain/datasets/filelist.py to load the data.

from mmpretrain.registry import DATASETS
from .base_dataset import BaseDataset

@DATASETS.register_module()
class Filelist(BaseDataset):

 def load_data_list(self):
 assert isinstance(self.ann_file, str),

 data_list = []
 with open(self.ann_file) as f:
 samples = [x.strip().split(' ') for x in f.readlines()]
 for filename, gt_label in samples:
 img_path = add_prefix(filename, self.img_prefix)
 info = {'img_path': img_path, 'gt_label': int(gt_label)}
 data_list.append(info)
 return data_list

2. Add to the package

And add this dataset class in mmpretrain/datasets/__init__.py

from .base_dataset import BaseDataset
...
from .filelist import Filelist

__all__ = [
 'BaseDataset', ... ,'Filelist'
]

3. Modify Related Config

Then in the config, to use Filelist you can modify the config as the following

train_dataloader = dict(
 ...
 dataset=dict(
 type='Filelist',
 ann_file='image_list.txt',
 pipeline=train_pipeline,
)
)

All the dataset classes inherit from BaseDataset [https://github.com/open-mmlab/mmpretrain/blob/main/mmpretrain/datasets/base_dataset.py] have lazy loading and memory saving features, you can refer to related documents of BaseDataset [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/basedataset.html].

Note

If the dictionary of the data sample contains ‘img_path’ but not ‘img’, then ‘LoadImgFromFile’ transform must be added in the pipeline.

Customize Data Pipeline

Design of Data pipelines

In the new dataset tutorial, we know that the dataset class use the load_data_list method
to initialize the entire dataset, and we save the information of every sample to a dict.

Usually, to save memory usage, we only load image paths and labels in the load_data_list, and load full
image content when we use them. Moreover, we may want to do some random data augmentation during picking
samples when training. Almost all data loading, pre-processing, and formatting operations can be configured in
MMPretrain by the data pipeline.

The data pipeline means how to process the sample dict when indexing a sample from the dataset. And it
consists of a sequence of data transforms. Each data transform takes a dict as input, processes it, and outputs a
dict for the next data transform.

Here is a data pipeline example for ResNet-50 training on ImageNet.

train_pipeline = [
 dict(type='LoadImageFromFile'),
 dict(type='RandomResizedCrop', scale=224),
 dict(type='RandomFlip', prob=0.5, direction='horizontal'),
 dict(type='PackInputs'),
]

All available data transforms in MMPretrain can be found in the data transforms docs.

Modify the training/test pipeline

The data pipeline in MMPretrain is pretty flexible. You can control almost every step of the data
preprocessing from the config file, but on the other hand, you may be confused facing so many options.

Here is a common practice and guidance for image classification tasks.

Loading

At the beginning of a data pipeline, we usually need to load image data from the file path.
LoadImageFromFile [https://mmcv.readthedocs.io/en/2.x/api/generated/mmcv.transforms.LoadImageFromFile.html#mmcv.transforms.LoadImageFromFile] is commonly used to do this task.

train_pipeline = [
 dict(type='LoadImageFromFile'),
 ...
]

If you want to load data from files with special formats or special locations, you can implement a new loading
transform and add it at the beginning of the data pipeline.

Augmentation and other processing

During training, we usually need to do data augmentation to avoid overfitting. During the test, we also need to do
some data processing like resizing and cropping. These data transforms will be placed after the loading process.

Here is a simple data augmentation recipe example. It will randomly resize and crop the input image to the
specified scale, and randomly flip the image horizontally with probability.

train_pipeline = [
 ...
 dict(type='RandomResizedCrop', scale=224),
 dict(type='RandomFlip', prob=0.5, direction='horizontal'),
 ...
]

Here is a heavy data augmentation recipe example used in Swin-Transformer
training. To align with the official implementation, it specified pillow as the resize backend and bicubic
as the resize algorithm. Moreover, it added RandAugment and
RandomErasing as extra data augmentation method.

This configuration specified every detail of the data augmentation, and you can simply copy it to your own
config file to apply the data augmentations of the Swin-Transformer.

bgr_mean = [103.53, 116.28, 123.675]
bgr_std = [57.375, 57.12, 58.395]

train_pipeline = [
 ...
 dict(type='RandomResizedCrop', scale=224, backend='pillow', interpolation='bicubic'),
 dict(type='RandomFlip', prob=0.5, direction='horizontal'),
 dict(
 type='RandAugment',
 policies='timm_increasing',
 num_policies=2,
 total_level=10,
 magnitude_level=9,
 magnitude_std=0.5,
 hparams=dict(
 pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
 dict(
 type='RandomErasing',
 erase_prob=0.25,
 mode='rand',
 min_area_ratio=0.02,
 max_area_ratio=1 / 3,
 fill_color=bgr_mean,
 fill_std=bgr_std),
 ...
]

Note

Usually, the data augmentation part in the data pipeline handles only image-wise transforms, but not transforms
like image normalization or mixup/cutmix. It’s because we can do image normalization and mixup/cutmix on batch data
to accelerate. To configure image normalization and mixup/cutmix, please use the data preprocessor.

Formatting

The formatting is to collect training data from the data information dict and convert these data to
model-friendly format.

In most cases, you can simply use PackInputs, and it will
convert the image in NumPy array format to PyTorch tensor, and pack the ground truth categories information and
other meta information as a DataSample.

train_pipeline = [
 ...
 dict(type='PackInputs'),
]

Add new data transforms

	Write a new data transform in any file, e.g., my_transform.py, and place it in
the folder mmpretrain/datasets/transforms/. The data transform class needs to inherit
the mmcv.transforms.BaseTransform [https://mmcv.readthedocs.io/en/2.x/api/generated/mmcv.transforms.BaseTransform.html#mmcv.transforms.BaseTransform] class and override
the transform method which takes a dict as input and returns a dict.

from mmcv.transforms import BaseTransform
from mmpretrain.registry import TRANSFORMS

@TRANSFORMS.register_module()
class MyTransform(BaseTransform):

 def transform(self, results):
 # Modify the data information dict `results`.
 return results

	Import the new class in the mmpretrain/datasets/transforms/__init__.py.

...
from .my_transform import MyTransform

__all__ = [
 ..., 'MyTransform'
]

	Use it in config files.

train_pipeline = [
 ...
 dict(type='MyTransform'),
 ...
]

Pipeline visualization

After designing data pipelines, you can use the visualization tools to view the performance.

Customize Models

In our design, a complete model is defined as a top-level module which contains several model components based on their functionalities.

	model: a top-level module defines the type of the task, such as ImageClassifier for image classification, MAE for self-supervised leanrning, ImageToImageRetriever for image retrieval.

	backbone: usually a feature extraction network that records the major differences between models, e.g., ResNet, MobileNet.

	neck: the component between backbone and head, e.g., GlobalAveragePooling.

	head: the component for specific tasks, e.g., ClsHead, ContrastiveHead.

	loss: the component in the head for calculating losses, e.g., CrossEntropyLoss, LabelSmoothLoss.

	target_generator: the component for self-supervised leanrning task specifically, e.g., VQKD, HOGGenerator.

Add a new model

Generally, for image classification and retrieval tasks, the pipelines are consistent. However, the pipelines are different from each self-supervised leanrning algorithms, like MAE and BEiT. Thus, in this section, we will explain how to add your self-supervised learning algorithm.

Add a new self-supervised learning algorithm

	Create a new file mmpretrain/models/selfsup/new_algorithm.py and implement NewAlgorithm in it.

from mmpretrain.registry import MODELS
from .base import BaseSelfSupvisor

@MODELS.register_module()
class NewAlgorithm(BaseSelfSupvisor):

 def __init__(self, backbone, neck=None, head=None, init_cfg=None):
 super().__init__(init_cfg)
 pass

 # ``extract_feat`` function is defined in BaseSelfSupvisor, you could
 # overwrite it if needed
 def extract_feat(self, inputs, **kwargs):
 pass

 # the core function to compute the loss
 def loss(self, inputs, data_samples, **kwargs):
 pass

	Import the new algorithm module in mmpretrain/models/selfsup/__init__.py

...
from .new_algorithm import NewAlgorithm

__all__ = [
 ...,
 'NewAlgorithm',
 ...
]

	Use it in your config file.

model = dict(
 type='NewAlgorithm',
 backbone=...,
 neck=...,
 head=...,
 ...
)

Add a new backbone

Here we present how to develop a new backbone component by an example of ResNet_CIFAR.
As the input size of CIFAR is 32x32, which is much smaller than the default size of 224x224 in ImageNet, this backbone replaces the kernel_size=7, stride=2 to kernel_size=3, stride=1 and removes the MaxPooling after the stem layer to avoid forwarding small feature maps to residual blocks.

The easiest way is to inherit from ResNet and only modify the stem layer.

	Create a new file mmpretrain/models/backbones/resnet_cifar.py.

import torch.nn as nn

from mmpretrain.registry import MODELS
from .resnet import ResNet

@MODELS.register_module()
class ResNet_CIFAR(ResNet):

 """ResNet backbone for CIFAR.

 short description of the backbone

 Args:
 depth(int): Network depth, from {18, 34, 50, 101, 152}.
 ...
 """

 def __init__(self, depth, deep_stem, **kwargs):
 # call ResNet init
 super(ResNet_CIFAR, self).__init__(depth, deep_stem=deep_stem, **kwargs)
 # other specific initializations
 assert not self.deep_stem, 'ResNet_CIFAR do not support deep_stem'

 def _make_stem_layer(self, in_channels, base_channels):
 # override the ResNet method to modify the network structure
 self.conv1 = build_conv_layer(
 self.conv_cfg,
 in_channels,
 base_channels,
 kernel_size=3,
 stride=1,
 padding=1,
 bias=False)
 self.norm1_name, norm1 = build_norm_layer(
 self.norm_cfg, base_channels, postfix=1)
 self.add_module(self.norm1_name, norm1)
 self.relu = nn.ReLU(inplace=True)

 def forward(self, x):
 # Customize the forward method if needed.
 x = self.conv1(x)
 x = self.norm1(x)
 x = self.relu(x)
 outs = []
 for i, layer_name in enumerate(self.res_layers):
 res_layer = getattr(self, layer_name)
 x = res_layer(x)
 if i in self.out_indices:
 outs.append(x)
 # The return value needs to be a tuple with multi-scale outputs from different depths.
 # If you don't need multi-scale features, just wrap the output as a one-item tuple.
 return tuple(outs)

 def init_weights(self):
 # Customize the weight initialization method if needed.
 super().init_weights()

 # Disable the weight initialization if loading a pretrained model.
 if self.init_cfg is not None and self.init_cfg['type'] == 'Pretrained':
 return

 # Usually, we recommend using `init_cfg` to specify weight initialization methods
 # of convolution, linear, or normalization layers. If you have some special needs,
 # do these extra weight initialization here.
 ...

Note

Replace original registry names from BACKBONES, NECKS, HEADS and LOSSES to MODELS in OpenMMLab 2.0 design.

	Import the new backbone module in mmpretrain/models/backbones/__init__.py.

...
from .resnet_cifar import ResNet_CIFAR

__all__ = [
 ..., 'ResNet_CIFAR'
]

	Modify the correlated settings in your config file.

model = dict(
 ...
 backbone=dict(
 type='ResNet_CIFAR',
 depth=18,
 ...),
 ...

Add a new backbone for self-supervised learning

For some self-supervised learning algorithms, the backbones are kind of different, such as MAE, BEiT, etc. Their backbones need to deal with mask in order to extract features from visible tokens.

Take MAEViT as an example, we need to overwrite forward function to compute with mask. We also defines init_weights to initialize parameters and random_masking to generate mask for MAE pre-training.

class MAEViT(VisionTransformer):
 """Vision Transformer for MAE pre-training"""

 def __init__(mask_ratio, **kwargs) -> None:
 super().__init__(**kwargs)
 # position embedding is not learnable during pretraining
 self.pos_embed.requires_grad = False
 self.mask_ratio = mask_ratio
 self.num_patches = self.patch_resolution[0] * self.patch_resolution[1]

 def init_weights(self) -> None:
 """Initialize position embedding, patch embedding and cls token."""
 super().init_weights()
 # define what if needed
 pass

 def random_masking(
 self,
 x: torch.Tensor,
 mask_ratio: float = 0.75
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
 """Generate the mask for MAE Pre-training."""
 pass

 def forward(
 self,
 x: torch.Tensor,
 mask: Optional[bool] = True
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
 """Generate features for masked images.

 The function supports two kind of forward behaviors. If the ``mask`` is
 ``True``, the function will generate mask to masking some patches
 randomly and get the hidden features for visible patches, which means
 the function will be executed as masked imagemodeling pre-training;
 if the ``mask`` is ``None`` or ``False``, the forward function will
 call ``super().forward()``, which extract features from images without
 mask.
 """
 if mask is None or False:
 return super().forward(x)

 else:
 B = x.shape[0]
 x = self.patch_embed(x)[0]
 # add pos embed w/o cls token
 x = x + self.pos_embed[:, 1:, :]

 # masking: length -> length * mask_ratio
 x, mask, ids_restore = self.random_masking(x, self.mask_ratio)

 # append cls token
 cls_token = self.cls_token + self.pos_embed[:, :1, :]
 cls_tokens = cls_token.expand(B, -1, -1)
 x = torch.cat((cls_tokens, x), dim=1)

 for _, layer in enumerate(self.layers):
 x = layer(x)
 # Use final norm
 x = self.norm1(x)

 return (x, mask, ids_restore)

Add a new neck

Here we take GlobalAveragePooling as an example. It is a very simple neck without any arguments.
To add a new neck, we mainly implement the forward function, which applies some operations on the output from the backbone and forwards the results to the head.

	Create a new file in mmpretrain/models/necks/gap.py.

import torch.nn as nn

from mmpretrain.registry import MODELS

@MODELS.register_module()
class GlobalAveragePooling(nn.Module):

 def __init__(self):
 self.gap = nn.AdaptiveAvgPool2d((1, 1))

 def forward(self, inputs):
 # we regard inputs as tensor for simplicity
 outs = self.gap(inputs)
 outs = outs.view(inputs.size(0), -1)
 return outs

	Import the new neck module in mmpretrain/models/necks/__init__.py.

...
from .gap import GlobalAveragePooling

__all__ = [
 ..., 'GlobalAveragePooling'
]

	Modify the correlated settings in your config file.

model = dict(
 neck=dict(type='GlobalAveragePooling'),
)

Add a new head

Based on ClsHead

Here we present how to develop a new head by the example of simplified VisionTransformerClsHead as the following.
To implement a new head, we need to implement a pre_logits method for processes before the final classification head and a forward method.

Why do we need the pre_logits method?

In classification tasks, we usually use a linear layer to do the final classification. And sometimes, we need
to obtain the feature before the final classification, which is the output of the pre_logits method.

	Create a new file in mmpretrain/models/heads/vit_head.py.

import torch.nn as nn

from mmpretrain.registry import MODELS
from .cls_head import ClsHead

@MODELS.register_module()
class VisionTransformerClsHead(ClsHead):

 def __init__(self, num_classes, in_channels, hidden_dim, **kwargs):
 super().__init__(**kwargs)
 self.in_channels = in_channels
 self.num_classes = num_classes
 self.hidden_dim = hidden_dim

 self.fc1 = nn.Linear(in_channels, hidden_dim)
 self.act = nn.Tanh()
 self.fc2 = nn.Linear(hidden_dim, num_classes)

 def pre_logits(self, feats):
 # The output of the backbone is usually a tuple from multiple depths,
 # and for classification, we only need the final output.
 feat = feats[-1]

 # The final output of VisionTransformer is a tuple of patch tokens and
 # classification tokens. We need classification tokens here.
 _, cls_token = feat

 # Do all works except the final classification linear layer.
 return self.act(self.fc1(cls_token))

 def forward(self, feats):
 pre_logits = self.pre_logits(feats)

 # The final classification linear layer.
 cls_score = self.fc2(pre_logits)
 return cls_score

	Import the module in mmpretrain/models/heads/__init__.py.

...
from .vit_head import VisionTransformerClsHead

__all__ = [
 ..., 'VisionTransformerClsHead'
]

	Modify the correlated settings in your config file.

model = dict(
 head=dict(
 type='VisionTransformerClsHead',
 ...,
))

Based on BaseModule

Here is an example of MAEPretrainHead, which is based on BaseModule and implemented for mask image modeling task. It is required to implement loss function to generate loss, but the other helper functions are optional.

Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmengine.model import BaseModule

from mmpretrain.registry import MODELS

@MODELS.register_module()
class MAEPretrainHead(BaseModule):
 """Head for MAE Pre-training."""

 def __init__(self,
 loss: dict,
 norm_pix: bool = False,
 patch_size: int = 16) -> None:
 super().__init__()
 self.norm_pix = norm_pix
 self.patch_size = patch_size
 self.loss_module = MODELS.build(loss)

 def patchify(self, imgs: torch.Tensor) -> torch.Tensor:
 """Split images into non-overlapped patches."""
 p = self.patch_size
 assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0

 h = w = imgs.shape[2] // p
 x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p))
 x = torch.einsum('nchpwq->nhwpqc', x)
 x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 3))
 return x

 def construct_target(self, target: torch.Tensor) -> torch.Tensor:
 """Construct the reconstruction target."""
 target = self.patchify(target)
 if self.norm_pix:
 # normalize the target image
 mean = target.mean(dim=-1, keepdim=True)
 var = target.var(dim=-1, keepdim=True)
 target = (target - mean) / (var + 1.e-6)**.5

 return target

 def loss(self, pred: torch.Tensor, target: torch.Tensor,
 mask: torch.Tensor) -> torch.Tensor:
 """Generate loss."""
 target = self.construct_target(target)
 loss = self.loss_module(pred, target, mask)

 return loss

After implementation, the following step is the same as the step-2 and step-3 in Based on ClsHead

Add a new loss

To add a new loss function, we mainly implement the forward function in the loss module. We should register the loss module as MODELS as well.
In addition, it is helpful to leverage the decorator weighted_loss to weight the loss for each element.
Assuming that we want to mimic a probabilistic distribution generated from another classification model, we implement an L1Loss to fulfill the purpose as below.

	Create a new file in mmpretrain/models/losses/l1_loss.py.

import torch
import torch.nn as nn

from mmpretrain.registry import MODELS
from .utils import weighted_loss

@weighted_loss
def l1_loss(pred, target):
 assert pred.size() == target.size() and target.numel() > 0
 loss = torch.abs(pred - target)
 return loss

@MODELS.register_module()
class L1Loss(nn.Module):

 def __init__(self, reduction='mean', loss_weight=1.0):
 super(L1Loss, self).__init__()
 self.reduction = reduction
 self.loss_weight = loss_weight

 def forward(self,
 pred,
 target,
 weight=None,
 avg_factor=None,
 reduction_override=None):
 assert reduction_override in (None, 'none', 'mean', 'sum')
 reduction = (
 reduction_override if reduction_override else self.reduction)
 loss = self.loss_weight * l1_loss(
 pred, target, weight, reduction=reduction, avg_factor=avg_factor)
 return loss

	Import the module in mmpretrain/models/losses/__init__.py.

...
from .l1_loss import L1Loss

__all__ = [
 ..., 'L1Loss'
]

	Modify loss field in the head configs.

model = dict(
 head=dict(
 loss=dict(type='L1Loss', loss_weight=1.0),
))

Finally, we can combine all the new model components in a config file to create a new model for best practices. Because ResNet_CIFAR is not a ViT-based backbone, we do not implement VisionTransformerClsHead here.

model = dict(
 type='ImageClassifier',
 backbone=dict(
 type='ResNet_CIFAR',
 depth=18,
 num_stages=4,
 out_indices=(3,),
 style='pytorch'),
 neck=dict(type='GlobalAveragePooling'),
 head=dict(
 type='LinearClsHead',
 num_classes=10,
 in_channels=512,
 loss=dict(type='L1Loss', loss_weight=1.0),
 topk=(1, 5),
))

Tip

For convenience, the same model components could inherit from existing config files, refers to Learn about configs for more details.

Customize Training Schedule

In our codebase, default training schedules [https://github.com/open-mmlab/mmpretrain/blob/main/configs/_base_/schedules] have been provided for common datasets such as CIFAR, ImageNet, etc. If we attempt to experiment on these datasets for higher accuracy or on different new methods and datasets, we might possibly need to modify the strategies.

In this tutorial, we will introduce how to modify configs to construct optimizers, use parameter-wise finely configuration, gradient clipping, gradient accumulation as well as customize learning rate and momentum schedules. Furthermore, introduce a template to customize self-implemented optimizationmethods for the project.

Customize optimization

We use the optim_wrapper field to configure the strategies of optimization, which includes choices of optimizer, choices of automatic mixed precision training, parameter-wise configurations, gradient clipping and accumulation. Details are seen below.

Use optimizers supported by PyTorch

We support all the optimizers implemented by PyTorch, and to use them, please change the optimizer field of config files.

For example, if you want to use SGD [https://pytorch.org/docs/stable/generated/torch.optim.SGD.html#torch.optim.SGD], the modification in config file could be as the following. Notice that optimization related settings should all wrapped inside the optim_wrapper.

optim_wrapper = dict(
 type='OptimWrapper',
 optimizer=dict(type='SGD', lr=0.0003, weight_decay=0.0001)
)

Note

type in optimizer is not a constructor but a optimizer name in PyTorch.
Refers to List of optimizers supported by PyTorch [https://pytorch.org/docs/stable/optim.html#algorithms] for more choices.

To modify the learning rate of the model, just modify the lr in the config of optimizer.
You can also directly set other arguments according to the API doc [https://pytorch.org/docs/stable/optim.html#module-torch.optim] of PyTorch.

For example, if you want to use Adam [https://pytorch.org/docs/stable/generated/torch.optim.Adam.html#torch.optim.Adam] with settings like torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False) in PyTorch. You could use the config below:

optim_wrapper = dict(
 type='OptimWrapper',
 optimizer = dict(
 type='Adam',
 lr=0.001,
 betas=(0.9, 0.999),
 eps=1e-08,
 weight_decay=0,
 amsgrad=False),
)

Note

The default type of optim_wrapper field is OptimWrapper [https://mmengine.readthedocs.io/en/latest/api/generated/mmengine.optim.OptimWrapper.html#mmengine.optim.OptimWrapper], therefore, you can
omit the type field usually, like:

optim_wrapper = dict(
 optimizer=dict(
 type='Adam',
 lr=0.001,
 betas=(0.9, 0.999),
 eps=1e-08,
 weight_decay=0,
 amsgrad=False))

Use AMP training

If we want to use the automatic mixed precision training, we can simply change the type of optim_wrapper to AmpOptimWrapper in config files.

optim_wrapper = dict(type='AmpOptimWrapper', optimizer=...)

Alternatively, for conveniency, we can set --amp parameter to turn on the AMP option directly in the tools/train.py script. Refers to Training tutorial for details of starting a training.

Parameter-wise finely configuration

Some models may have parameter-specific settings for optimization, for example, no weight decay to the BatchNorm layers or using different learning rates for different network layers.
To finely configure them, we can use the paramwise_cfg argument in optim_wrapper.

	Set different hyper-parameter multipliers for different types of parameters.

For instance, we can set norm_decay_mult=0. in paramwise_cfg to change the weight decay of weight and bias of normalization layers to zero.

optim_wrapper = dict(
 optimizer=dict(type='SGD', lr=0.8, weight_decay=1e-4),
 paramwise_cfg=dict(norm_decay_mult=0.))

More types of parameters are supported to configured, list as follow:

	bias_lr_mult: Multiplier for learning rate of bias (Not include normalization layers’ biases and deformable convolution layers’ offsets). Defaults to 1.

	bias_decay_mult: Multiplier for weight decay of bias (Not include normalization layers’ biases and deformable convolution layers’ offsets). Defaults to 1.

	norm_decay_mult: Multiplier for weight decay of weight and bias of normalization layers. Defaults to 1.

	flat_decay_mult: Multiplier for weight decay of all one-dimensional parameters. Defaults to 1.

	dwconv_decay_mult: Multiplier for weight decay of depth-wise convolution layers. Defaults to 1.

	bypass_duplicate: Whether to bypass duplicated parameters. Defaults to False.

	dcn_offset_lr_mult: Multiplier for learning rate of deformable convolution layers. Defaults to 1.

	Set different hyper-parameter multipliers for specific parameters.

MMPretrain can use custom_keys in paramwise_cfg to specify different parameters to use different learning rates or weight decay.

For example, to set all learning rates and weight decays of backbone.layer0 to 0, the rest of backbone remains the same as optimizer and the learning rate of head to 0.001, use the configs below.

optim_wrapper = dict(
 optimizer=dict(type='SGD', lr=0.01, weight_decay=0.0001),
 paramwise_cfg=dict(
 custom_keys={
 'backbone.layer0': dict(lr_mult=0, decay_mult=0),
 'backbone': dict(lr_mult=1),
 'head': dict(lr_mult=0.1)
 }))

Gradient clipping

During the training process, the loss function may get close to a cliffy region and cause gradient explosion. And gradient clipping is helpful to stabilize the training process. More introduction can be found in this page [https://paperswithcode.com/method/gradient-clipping].

Currently we support clip_grad option in optim_wrapper for gradient clipping, refers to PyTorch Documentation [https://pytorch.org/docs/stable/generated/torch.nn.utils.clip_grad_norm_.html#torch.nn.utils.clip_grad_norm_].

Here is an example:

optim_wrapper = dict(
 optimizer=dict(type='SGD', lr=0.01, weight_decay=0.0001),
 # norm_type: type of the used p-norm, here norm_type is 2.
 clip_grad=dict(max_norm=35, norm_type=2))

Gradient accumulation

When computing resources are lacking, the batch size can only be set to a small value, which may affect the performance of models. Gradient accumulation can be used to solve this problem. We support accumulative_counts option in optim_wrapper for gradient accumulation.

Here is an example:

train_dataloader = dict(batch_size=64)
optim_wrapper = dict(
 optimizer=dict(type='SGD', lr=0.01, weight_decay=0.0001),
 accumulative_counts=4)

Indicates that during training, back-propagation is performed every 4 iters. And the above is equivalent to:

train_dataloader = dict(batch_size=256)
optim_wrapper = dict(
 optimizer=dict(type='SGD', lr=0.01, weight_decay=0.0001))

Customize parameter schedules

In training, the optimzation parameters such as learing rate, momentum, are usually not fixed but changing through iterations or epochs. PyTorch supports several learning rate schedulers, which are not sufficient for complex strategies. In MMPretrain, we provide param_scheduler for better controls of different parameter schedules.

Customize learning rate schedules

Learning rate schedulers are widely used to improve performance. We support most of the PyTorch schedulers, including ExponentialLR, LinearLR, StepLR, MultiStepLR, etc.

All available learning rate scheduler can be found here [https://mmengine.readthedocs.io/en/latest/api/optim.html], and the
names of learning rate schedulers end with LR.

	Single learning rate schedule

In most cases, we use only one learning rate schedule for simplicity. For instance, MultiStepLR [https://mmengine.readthedocs.io/en/latest/api/generated/mmengine.optim.MultiStepLR.html#mmengine.optim.MultiStepLR] is used as the default learning rate schedule for ResNet. Here, param_scheduler is a dictionary.

param_scheduler = dict(
 type='MultiStepLR',
 by_epoch=True,
 milestones=[100, 150],
 gamma=0.1)

Or, we want to use the CosineAnnealingLR [https://mmengine.readthedocs.io/en/latest/api/generated/mmengine.optim.CosineAnnealingLR.html#mmengine.optim.CosineAnnealingLR] scheduler to decay the learning rate:

param_scheduler = dict(
 type='CosineAnnealingLR',
 by_epoch=True,
 T_max=num_epochs)

	Multiple learning rate schedules

In some of the training cases, multiple learning rate schedules are applied for higher accuracy. For example ,in the early stage, training is easy to be volatile, and warmup is a technique to reduce volatility.
The learning rate will increase gradually from a minor value to the expected value by warmup and decay afterwards by other schedules.

In MMPretrain, simply combines desired schedules in param_scheduler as a list can achieve the warmup strategy.

Here are some examples:

	linear warmup during the first 50 iters.

 param_scheduler = [
 # linear warm-up by iters
 dict(type='LinearLR',
 start_factor=0.001,
 by_epoch=False, # by iters
 end=50), # only warm up for first 50 iters
 # main learing rate schedule
 dict(type='MultiStepLR',
 by_epoch=True,
 milestones=[8, 11],
 gamma=0.1)
]

	linear warmup and update lr by iter during the first 10 epochs.

 param_scheduler = [
 # linear warm-up by epochs in [0, 10) epochs
 dict(type='LinearLR',
 start_factor=0.001,
 by_epoch=True,
 end=10,
 convert_to_iter_based=True, # Update learning rate by iter.
),
 # use CosineAnnealing schedule after 10 epochs
 dict(type='CosineAnnealingLR', by_epoch=True, begin=10)
]

Notice that, we use begin and end arguments here to assign the valid range, which is [begin, end) for this schedule. And the range unit is defined by by_epoch argument. If not specified, the begin is 0 and the end is the max epochs or iterations.

If the ranges for all schedules are not continuous, the learning rate will stay constant in ignored range, otherwise all valid schedulers will be executed in order in a specific stage, which behaves the same as PyTorch ChainedScheduler [https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ChainedScheduler.html#torch.optim.lr_scheduler.ChainedScheduler].

Tip

To check that the learning rate curve is as expected, after completing your configuration file，you could use optimizer parameter visualization tool to draw the corresponding learning rate adjustment curve.

Customize momentum schedules

We support using momentum schedulers to modify the optimizer’s momentum according to learning rate, which could make the loss converge in a faster way. The usage is the same as learning rate schedulers.

All available learning rate scheduler can be found here [https://mmengine.readthedocs.io/en/latest/api/optim.html], and the
names of momentum rate schedulers end with Momentum.

Here is an example:

param_scheduler = [
 # the lr scheduler
 dict(type='LinearLR', ...),
 # the momentum scheduler
 dict(type='LinearMomentum',
 start_factor=0.001,
 by_epoch=False,
 begin=0,
 end=1000)
]

Add new optimizers or constructors

Note

This part will modify the MMPretrain source code or add code to the MMPretrain framework, beginners can skip it.

Add new optimizers

In academic research and industrial practice, it may be necessary to use optimization methods not implemented by MMPretrain, and you can add them through the following methods.

	Implement a New Optimizer

Assume you want to add an optimizer named MyOptimizer, which has arguments a, b, and c.
You need to create a new file under mmpretrain/engine/optimizers, and implement the new optimizer in the file, for example, in mmpretrain/engine/optimizers/my_optimizer.py:

from torch.optim import Optimizer
from mmpretrain.registry import OPTIMIZERS

@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):

 def __init__(self, a, b, c):
 ...

 def step(self, closure=None):
 ...

	Import the Optimizer

To find the above module defined above, this module should be imported during the running.

Import it in the mmpretrain/engine/optimizers/__init__.py to add it into the mmpretrain.engine package.

In mmpretrain/engine/optimizers/__init__.py
...
from .my_optimizer import MyOptimizer # MyOptimizer maybe other class name

__all__ = [..., 'MyOptimizer']

During running, we will automatically import the mmpretrain.engine package and register the MyOptimizer at the same time.

	Specify the Optimizer in Config

Then you can use MyOptimizer in the optim_wrapper.optimizer field of config files.

optim_wrapper = dict(
 optimizer=dict(type='MyOptimizer', a=a_value, b=b_value, c=c_value))

Add new optimizer constructors

Some models may have some parameter-specific settings for optimization, like different weight decay rate for all BatchNorm layers.

Although we already can use the optim_wrapper.paramwise_cfg field to
configure various parameter-specific optimizer settings. It may still not cover your need.

Of course, you can modify it. By default, we use the DefaultOptimWrapperConstructor [https://mmengine.readthedocs.io/en/latest/api/generated/mmengine.optim.DefaultOptimWrapperConstructor.html#mmengine.optim.DefaultOptimWrapperConstructor]
class to deal with the construction of optimizer. And during the construction, it fine-grainedly configures the optimizer settings of
different parameters according to the paramwise_cfg，which could also serve as a template for new optimizer constructor.

You can overwrite these behaviors by add new optimizer constructors.

In mmpretrain/engine/optimizers/my_optim_constructor.py
from mmengine.optim import DefaultOptimWrapperConstructor
from mmpretrain.registry import OPTIM_WRAPPER_CONSTRUCTORS

@OPTIM_WRAPPER_CONSTRUCTORS.register_module()
class MyOptimWrapperConstructor:

 def __init__(self, optim_wrapper_cfg, paramwise_cfg=None):
 ...

 def __call__(self, model):
 ...

Here is a specific example of OptimWrapperConstructor.

And then, import it and use it almost like the optimizer tutorial.

	Import it in the mmpretrain/engine/optimizers/__init__.py to add it into the mmpretrain.engine package.

In mmpretrain/engine/optimizers/__init__.py
...
from .my_optim_constructor import MyOptimWrapperConstructor

__all__ = [..., 'MyOptimWrapperConstructor']

	Use MyOptimWrapperConstructor in the optim_wrapper.constructor field of config files.

optim_wrapper = dict(
 constructor=dict(type='MyOptimWrapperConstructor'),
 optimizer=...,
 paramwise_cfg=...,
)

Customize Runtime Settings

The runtime configurations include many helpful functionalities, like checkpoint saving, logger configuration,
etc. In this tutorial, we will introduce how to configure these functionalities.

Save Checkpoint

The checkpoint saving functionality is a default hook during training. And you can configure it in the
default_hooks.checkpoint field.

Note

The hook mechanism is widely used in all OpenMMLab libraries. Through hooks, you can plug in many
functionalities without modifying the main execution logic of the runner.

A detailed introduction of hooks can be found in Hooks [https://mmengine.readthedocs.io/en/latest/tutorials/hook.html].

The default settings

default_hooks = dict(
 ...
 checkpoint = dict(type='CheckpointHook', interval=1)
 ...
)

Here are some usual arguments, and all available arguments can be found in the CheckpointHook [https://mmengine.readthedocs.io/en/latest/api/generated/mmengine.hooks.CheckpointHook.html#mmengine.hooks.CheckpointHook].

	interval (int): The saving period. If use -1, it will never save checkpoints.

	by_epoch (bool): Whether the interval is by epoch or by iteration. Defaults to True.

	out_dir (str): The root directory to save checkpoints. If not specified, the checkpoints will be saved in the work directory. If specified, the checkpoints will be saved in the sub-folder of the out_dir.

	max_keep_ckpts (int): The maximum checkpoints to keep. In some cases, we want only the latest few checkpoints and would like to delete old ones to save disk space. Defaults to -1, which means unlimited.

	save_best (str, List[str]): If specified, it will save the checkpoint with the best evaluation result.
Usually, you can simply use save_best="auto" to automatically select the evaluation metric.

And if you want more advanced configuration, please refer to the CheckpointHook docs [https://mmengine.readthedocs.io/en/latest/tutorials/hook.html#checkpointhook].

Load Checkpoint / Resume Training

In config files, you can specify the loading and resuming functionality as below:

load from which checkpoint
load_from = "Your checkpoint path"

whether to resume training from the loaded checkpoint
resume = False

The load_from field can be either a local path or an HTTP path. And you can resume training from the checkpoint by
specify resume=True.

Tip

You can also enable auto resuming from the latest checkpoint by specifying load_from=None and resume=True.
Runner will find the latest checkpoint from the work directory automatically.

If you are training models by our tools/train.py script, you can also use --resume argument to resume
training without modifying the config file manually.

Automatically resume from the latest checkpoint.
python tools/train.py configs/resnet/resnet50_8xb32_in1k.py --resume

Resume from the specified checkpoint.
python tools/train.py configs/resnet/resnet50_8xb32_in1k.py --resume checkpoints/resnet.pth

Randomness Configuration

In the randomness field, we provide some options to make the experiment as reproducible as possible.

By default, we won’t specify seed in the config file, and in every experiment, the program will generate a random seed.

Default settings:

randomness = dict(seed=None, deterministic=False)

To make the experiment more reproducible, you can specify a seed and set deterministic=True. The influence
of the deterministic option can be found here [https://pytorch.org/docs/stable/notes/randomness.html#cuda-convolution-benchmarking].

Log Configuration

The log configuration relates to multiple fields.

In the log_level field, you can specify the global logging level. See Logging Levels [https://docs.python.org/3/library/logging.html#levels] for a list of levels.

log_level = 'INFO'

In the default_hooks.logger field, you can specify the logging interval during training and testing. And all
available arguments can be found in the LoggerHook docs [https://mmengine.readthedocs.io/en/latest/tutorials/hook.html#loggerhook].

default_hooks = dict(
 ...
 # print log every 100 iterations.
 logger=dict(type='LoggerHook', interval=100),
 ...
)

In the log_processor field, you can specify the log smooth method. Usually, we use a window with length of 10
to smooth the log and output the mean value of all information. If you want to specify the smooth method of
some information finely, see the LogProcessor docs [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/logging.html].

The default setting, which will smooth the values in training log by a 10-length window.
log_processor = dict(window_size=10)

In the visualizer field, you can specify multiple backends to save the log information, such as TensorBoard
and WandB. More details can be found in the Visualizer section.

Custom Hooks

Many above functionalities are implemented by hooks, and you can also plug-in other custom hooks by modifying
custom_hooks field. Here are some hooks in MMEngine and MMPretrain that you can use directly, such as:

	EMAHook

	SyncBuffersHook [https://mmengine.readthedocs.io/en/latest/api/generated/mmengine.hooks.SyncBuffersHook.html#mmengine.hooks.SyncBuffersHook]

	EmptyCacheHook [https://mmengine.readthedocs.io/en/latest/api/generated/mmengine.hooks.EmptyCacheHook.html#mmengine.hooks.EmptyCacheHook]

	ClassNumCheckHook

	……

For example, EMA (Exponential Moving Average) is widely used in the model training, and you can enable it as
below:

custom_hooks = [
 dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL'),
]

Visualize Validation

The validation visualization functionality is a default hook during validation. And you can configure it in the
default_hooks.visualization field.

By default, we disabled it, and you can enable it by specifying enable=True. And more arguments can be found in
the VisualizationHook docs.

default_hooks = dict(
 ...
 visualization=dict(type='VisualizationHook', enable=False),
 ...
)

This hook will select some images in the validation dataset, and tag the prediction results on these images
during every validation process. You can use it to watch the varying of model performance on actual images
during training.

In addition, if the images in your validation dataset are small (<100), you can rescale them before
visualization by specifying rescale_factor=2. or higher.

Visualizer

The visualizer is used to record all kinds of information during training and test, including logs, images and
scalars. By default, the recorded information will be saved at the vis_data folder under the work directory.

Default settings:

visualizer = dict(
 type='UniversalVisualizer',
 vis_backends=[
 dict(type='LocalVisBackend'),
]
)

Usually, the most useful function is to save the log and scalars like loss to different backends.
For example, to save them to TensorBoard, simply set them as below:

visualizer = dict(
 type='UniversalVisualizer',
 vis_backends=[
 dict(type='LocalVisBackend'),
 dict(type='TensorboardVisBackend'),
]
)

Or save them to WandB as below:

visualizer = dict(
 type='UniversalVisualizer',
 vis_backends=[
 dict(type='LocalVisBackend'),
 dict(type='WandbVisBackend'),
]
)

Environment Configuration

In the env_cfg field, you can configure some low-level parameters, like cuDNN, multi-process, and distributed
communication.

Please make sure you understand the meaning of these parameters before modifying them.

env_cfg = dict(
 # whether to enable cudnn benchmark
 cudnn_benchmark=False,

 # set multi-process parameters
 mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),

 # set distributed parameters
 dist_cfg=dict(backend='nccl'),
)

Customize Evaluation Metrics

Use metrics in MMPretrain

In MMPretrain, we have provided multiple metrics for both single-label classification and multi-label
classification:

Single-label Classification:

	Accuracy

	SingleLabelMetric, including precision, recall, f1-score and
support.

Multi-label Classification:

	AveragePrecision, or AP (mAP).

	MultiLabelMetric, including precision, recall, f1-score and
support.

To use these metrics during validation and testing, we need to modify the val_evaluator and test_evaluator
fields in the config file.

Here is several examples:

	Calculate top-1 and top-5 accuracy during both validation and test.

val_evaluator = dict(type='Accuracy', topk=(1, 5))
test_evaluator = val_evaluator

	Calculate top-1 accuracy, top-5 accuracy, precision and recall during both validation and test.

val_evaluator = [
 dict(type='Accuracy', topk=(1, 5)),
 dict(type='SingleLabelMetric', items=['precision', 'recall']),
]
test_evaluator = val_evaluator

	Calculate mAP (mean AveragePrecision), CP (Class-wise mean Precision), CR (Class-wise mean Recall), CF
(Class-wise mean F1-score), OP (Overall mean Precision), OR (Overall mean Recall) and OF1 (Overall mean
F1-score).

val_evaluator = [
 dict(type='AveragePrecision'),
 dict(type='MultiLabelMetric', average='macro'), # class-wise mean
 dict(type='MultiLabelMetric', average='micro'), # overall mean
]
test_evaluator = val_evaluator

Add new metrics

MMPretrain supports the implementation of customized evaluation metrics for users who pursue higher customization.

You need to create a new file under mmpretrain/evaluation/metrics, and implement the new metric in the file, for example, in mmpretrain/evaluation/metrics/my_metric.py. And create a customized evaluation metric class MyMetric which inherits BaseMetric in MMEngine [https://mmengine.readthedocs.io/en/latest/api/generated/mmengine.evaluator.BaseMetric.html#mmengine.evaluator.BaseMetric].

The data format processing method process and the metric calculation method compute_metrics need to be overwritten respectively. Add it to the METRICS registry to implement any customized evaluation metric.

from mmengine.evaluator import BaseMetric
from mmpretrain.registry import METRICS

@METRICS.register_module()
class MyMetric(BaseMetric):

 def process(self, data_batch: Sequence[Dict], data_samples: Sequence[Dict]):
 """ The processed results should be stored in ``self.results``, which will
 be used to computed the metrics when all batches have been processed.
 `data_batch` stores the batch data from dataloader,
 and `data_samples` stores the batch outputs from model.
 """
 ...

 def compute_metrics(self, results: List):
 """ Compute the metrics from processed results and returns the evaluation results.
 """
 ...

Then, import it in the mmpretrain/evaluation/metrics/__init__.py to add it into the mmpretrain.evaluation package.

In mmpretrain/evaluation/metrics/__init__.py
...
from .my_metric import MyMetric

__all__ = [..., 'MyMetric']

Finally, use MyMetric in the val_evaluator and test_evaluator field of config files.

val_evaluator = dict(type='MyMetric', ...)
test_evaluator = val_evaluator

Note

More details can be found in MMEngine Documentation: Evaluation [https://mmengine.readthedocs.io/en/latest/design/evaluation.html].

Convention in MMPretrain

Model Naming Convention

We follow the below convention to name models. Contributors are advised to follow the same style. The model names are divided into five parts: algorithm info, module information, pretrain information, training information and data information. Logically, different parts are concatenated by underscores '_', and words in the same part are concatenated by dashes '-'.

{algorithm info}_{module info}_{pretrain info}_{training info}_{data info}

	algorithm info (optional): The main algorithm information, it’s includes the main training algorithms like MAE, BEiT, etc.

	module info: The module information, it usually includes the backbone name, such as resnet, vit, etc.

	pretrain info: (optional): The pretrain model information, such as the pretrain model is trained on ImageNet-21k.

	training info: The training information, some training schedule, including batch size, lr schedule, data augment and the like.

	data info: The data information, it usually includes the dataset name, input size and so on, such as imagenet, cifar, etc.

Algorithm information

The main algorithm name to train the model. For example:

	simclr

	mocov2

	eva-mae-style

The model trained by supervised image classification can omit this field.

Module information

The modules of the model, usually, the backbone must be included in this field, and the neck and head
information can be omitted. For example:

	resnet50

	vit-base-p16

	swin-base

Pretrain information

If the model is a fine-tuned model from a pre-trained model, we need to record some information of the
pre-trained model. For example:

	The source of the pre-trained model: fb, openai, etc.

	The method to train the pre-trained model: clip, mae, distill, etc.

	The dataset used for pre-training: in21k, laion2b, etc. (in1k can be omitted.)

	The training duration: 300e, 1600e, etc.

Not all information is necessary, only select the necessary information to distinguish different pre-trained
models.

At the end of this field, use a -pre as an identifier, like mae-in21k-pre.

Training information

Training schedule, including training type, batch size, lr schedule, data augment, special loss functions and so on:

	format {gpu x batch_per_gpu}, such as 8xb32

Training type (mainly seen in the transformer network, such as the ViT algorithm, which is usually divided into two training type: pre-training and fine-tuning):

	ft : configuration file for fine-tuning

	pt : configuration file for pretraining

Training recipe. Usually, only the part that is different from the original paper will be marked. These methods will be arranged in the order {pipeline aug}-{train aug}-{loss trick}-{scheduler}-{epochs}.

	coslr-200e : use cosine scheduler to train 200 epochs

	autoaug-mixup-lbs-coslr-50e : use autoaug, mixup, label smooth, cosine scheduler to train 50 epochs

If the model is converted from a third-party repository like the official repository, the training information
can be omitted and use a 3rdparty as an identifier.

Data information

	in1k : ImageNet1k dataset, default to use the input image size of 224x224;

	in21k : ImageNet21k dataset, also called ImageNet22k dataset, default to use the input image size of 224x224;

	in1k-384px : Indicates that the input image size is 384x384;

	cifar100

Model Name Example

vit-base-p32_clip-openai-pre_3rdparty_in1k

	vit-base-p32: The module information

	clip-openai-pre: The pre-train information.

	clip: The pre-train method is clip.

	openai: The pre-trained model is come from OpenAI.

	pre: The pre-train identifier.

	3rdparty: The model is converted from a third-party repository.

	in1k: Dataset information. The model is trained from ImageNet-1k dataset and the input size is 224x224.

beit_beit-base-p16_8xb256-amp-coslr-300e_in1k

	beit: The algorithm information

	beit-base: The module information, since the backbone is a modified ViT from BEiT, the backbone name is
also beit.

	8xb256-amp-coslr-300e: The training information.

	8xb256: Use 8 GPUs and the batch size on each GPU is 256.

	amp: Use automatic-mixed-precision training.

	coslr: Use cosine annealing learning rate scheduler.

	300e: To train 300 epochs.

	in1k: Dataset information. The model is trained from ImageNet-1k dataset and the input size is 224x224.

Config File Naming Convention

The naming of the config file is almost the same with the model name, with several difference:

	The training information is necessary, and cannot be 3rdparty.

	If the config file only includes backbone settings, without neither head settings nor dataset settings. We
will name it as {module info}_headless.py. This kind of config files are usually used for third-party
pre-trained models on large datasets.

Checkpoint Naming Convention

The naming of the weight mainly includes the model name, date and hash value.

{model_name}_{date}-{hash}.pth

Model Zoo Summary

In this page, we list all algorithms we support. You can click the link to jump to the corresponding model pages.

And we also list all checkpoints for different tasks we provide. You can sort or search checkpoints in the table and click the corresponding link to model pages for more details.

All supported algorithms

	Number of papers: 84

	Algorithm: 84

	Number of checkpoints: 520

	[Algorithm] MobileNetV2: Inverted Residuals and Linear Bottlenecks (1 ckpts)

	[Algorithm] Searching for MobileNetV3 (6 ckpts)

	[Algorithm] Deep Residual Learning for Image Recognition (22 ckpts)

	[Algorithm] Res2Net: A New Multi-scale Backbone Architecture (3 ckpts)

	[Algorithm] Aggregated Residual Transformations for Deep Neural Networks (4 ckpts)

	[Algorithm] Squeeze-and-Excitation Networks (2 ckpts)

	[Algorithm] ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices (1 ckpts)

	[Algorithm] ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design (1 ckpts)

	[Algorithm] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (12 ckpts)

	[Algorithm] Very Deep Convolutional Networks for Large-Scale Image Recognition (8 ckpts)

	[Algorithm] RepVGG: Making VGG-style ConvNets Great Again (12 ckpts)

	[Algorithm] Transformer in Transformer (1 ckpts)

	[Algorithm] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (4 ckpts)

	[Algorithm] Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet (3 ckpts)

	[Algorithm] TinyViT: Fast Pretraining Distillation for Small Vision Transformers (8 ckpts)

	[Algorithm] MLP-Mixer: An all-MLP Architecture for Vision (2 ckpts)

	[Algorithm] Conformer: Local Features Coupling Global Representations for Visual Recognition (4 ckpts)

	[Algorithm] Designing Network Design Spaces (8 ckpts)

	[Algorithm] Training data-efficient image transformers & distillation through attention (9 ckpts)

	[Algorithm] Twins: Revisiting the Design of Spatial Attention in Vision Transformers (6 ckpts)

	[Algorithm] EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks (33 ckpts)

	[Algorithm] A ConvNet for the 2020s (24 ckpts)

	[Algorithm] Deep High-Resolution Representation Learning for Visual Recognition (9 ckpts)

	[Algorithm] RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (2 ckpts)

	[Algorithm] Wide Residual Networks (3 ckpts)

	[Algorithm] Visual Attention Network (4 ckpts)

	[Algorithm] CSPNet: A New Backbone that can Enhance Learning Capability of CNN (3 ckpts)

	[Algorithm] Patches Are All You Need? (3 ckpts)

	[Algorithm] Densely Connected Convolutional Networks (4 ckpts)

	[Algorithm] MetaFormer is Actually What You Need for Vision (5 ckpts)

	[Algorithm] Rethinking the Inception Architecture for Computer Vision (1 ckpts)

	[Algorithm] MViTv2: Improved Multiscale Vision Transformers for Classification and Detection (4 ckpts)

	[Algorithm] EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for Mobile Vision Applications (6 ckpts)

	[Algorithm] An Improved One millisecond Mobile Backbone (5 ckpts)

	[Algorithm] EfficientFormer: Vision Transformers at MobileNet Speed (3 ckpts)

	[Algorithm] Swin Transformer V2: Scaling Up Capacity and Resolution (12 ckpts)

	[Algorithm] DeiT III: Revenge of the ViT (16 ckpts)

	[Algorithm] HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions (6 ckpts)

	[Algorithm] MobileViT Light-weight, General-purpose, and Mobile-friendly Vision Transformer (3 ckpts)

	[Algorithm] DaViT: Dual Attention Vision Transformers (3 ckpts)

	[Algorithm] Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs (6 ckpts)

	[Algorithm] Residual Attention: A Simple but Effective Method for Multi-Label Recognition (1 ckpts)

	[Algorithm] BEiT: BERT Pre-Training of Image Transformers (3 ckpts)

	[Algorithm] BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers (3 ckpts)

	[Algorithm] EVA: Exploring the Limits of Masked Visual Representation Learning at Scale (14 ckpts)

	[Algorithm] Reversible Vision Transformers (2 ckpts)

	[Algorithm] Learning Transferable Visual Models From Natural Language Supervision (14 ckpts)

	[Algorithm] MixMIM: Mixed and Masked Image Modeling for Efficient Visual Representation Learning (2 ckpts)

	[Algorithm] EfficientNetV2: Smaller Models and Faster Training (15 ckpts)

	[Algorithm] Co-designing and Scaling ConvNets with Masked Autoencoders (26 ckpts)

	[Algorithm] LeViT: a Vision Transformer in ConvNet’s Clothing for Faster Inference (5 ckpts)

	[Algorithm] Vision GNN: An Image is Worth Graph of Nodes (7 ckpts)

	[Algorithm] ArcFace: Additive Angular Margin Loss for Deep Face Recognition (1 ckpts)

	[Algorithm] XCiT: Cross-Covariance Image Transformers (42 ckpts)

	[Algorithm] Bootstrap your own latent: A new approach to self-supervised Learning (2 ckpts)

	[Algorithm] Dense contrastive learning for self-supervised visual pre-training (2 ckpts)

	[Algorithm] Improved Baselines with Momentum Contrastive Learning (2 ckpts)

	[Algorithm] An Empirical Study of Training Self-Supervised Vision Transformers (13 ckpts)

	[Algorithm] A simple framework for contrastive learning of visual representations (4 ckpts)

	[Algorithm] Exploring simple siamese representation learning (4 ckpts)

	[Algorithm] Unsupervised Learning of Visual Features by Contrasting Cluster Assignments (2 ckpts)

	[Algorithm] Masked Autoencoders Are Scalable Vision Learners (11 ckpts)

	[Algorithm] SimMIM: A Simple Framework for Masked Image Modeling (6 ckpts)

	[Algorithm] Barlow Twins: Self-Supervised Learning via Redundancy Reduction (2 ckpts)

	[Algorithm] Context Autoencoder for Self-Supervised Representation Learning (2 ckpts)

	[Algorithm] Masked Feature Prediction for Self-Supervised Visual Pre-Training (2 ckpts)

	[Algorithm] MILAN: Masked Image Pretraining on Language Assisted Representation (3 ckpts)

	[Algorithm] OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework (4 ckpts)

	[Algorithm] RIFormer: Keep Your Vision Backbone Effective But Removing Token Mixer (10 ckpts)

	[Algorithm] Segment Anything (3 ckpts)

	[Algorithm] Grounded Language-Image Pre-training (2 ckpts)

	[Algorithm] EVA-02: A Visual Representation for Neon Genesis (11 ckpts)

	[Algorithm] DINOv2: Learning Robust Visual Features without Supervision (4 ckpts)

	[Algorithm] BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation (5 ckpts)

	[Algorithm] Flamingo: a Visual Language Model for Few-Shot Learning (1 ckpts)

	[Algorithm] BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models (2 ckpts)

	[Algorithm] Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese (4 ckpts)

	[Algorithm] Integrally Pre-Trained Transformer Pyramid Networks (0 ckpts)

	[Algorithm] HiViT: A Simple and More Efficient Design of Hierarchical Vision Transformer (0 ckpts)

	[Algorithm] Designing BERT for Convolutional Networks: Sparse and Hierarchical Masked Modeling (4 ckpts)

	[Algorithm] MiniGPT-4: Enhancing Vision-language Understanding with Advanced Large Language Models (2 ckpts)

	[Algorithm] Visual Instruction Tuning (0 ckpts)

	[Algorithm] Otter: A Multi-Modal Model with In-Context Instruction Tuning (1 ckpts)

	[Algorithm] Improving Pixel-based MIM by Reducing Wasted Modeling Capability (5 ckpts)

Pretrained Models

	Model

	Params (M)

	Flops (G)

	Readme

	convnext-base_3rdparty_in21k

	88.59

	15.36

	link

	convnext-large_3rdparty_in21k

	197.77

	34.37

	link

	convnext-xlarge_3rdparty_in21k

	350.20

	60.93

	link

	swinv2-base-w12_3rdparty_in21k-192px

	87.92

	8.51

	link

	swinv2-large-w12_3rdparty_in21k-192px

	196.74

	19.04

	link

	beit_beit-base-p16_8xb256-amp-coslr-300e_in1k

	86.53

	17.58

	link

	beitv2_beit-base-p16_8xb256-amp-coslr-300e_in1k

	192.81

	17.58

	link

	eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k

	111.78

	17.58

	link

	beit-l-p14_3rdparty-eva_in21k

	303.18

	81.08

	link

	beit-l-p14_eva-pre_3rdparty_in21k

	303.18

	81.08

	link

	beit-g-p16_3rdparty-eva_30m

	1011.32

	203.52

	link

	beit-g-p14_3rdparty-eva_30m

	1011.60

	267.17

	link

	beit-g-p14_eva-30m-pre_3rdparty_in21k

	1011.60

	267.17

	link

	vit-large-p14_clip-openai-pre_3rdparty

	303.30

	59.70

	link

	mixmim_mixmim-base_16xb128-coslr-300e_in1k

	114.67

	16.35

	link

	efficientnetv2-s_3rdparty_in21k

	48.16

	3.31

	link

	efficientnetv2-m_3rdparty_in21k

	80.84

	5.86

	link

	efficientnetv2-l_3rdparty_in21k

	145.22

	13.11

	link

	efficientnetv2-xl_3rdparty_in21k

	234.82

	18.86

	link

	convnext-v2-atto_3rdparty-fcmae_in1k

	3.71

	0.55

	link

	convnext-v2-femto_3rdparty-fcmae_in1k

	5.23

	0.78

	link

	convnext-v2-pico_3rdparty-fcmae_in1k

	9.07

	1.37

	link

	convnext-v2-nano_3rdparty-fcmae_in1k

	15.62

	2.45

	link

	convnext-v2-tiny_3rdparty-fcmae_in1k

	28.64

	4.47

	link

	convnext-v2-base_3rdparty-fcmae_in1k

	88.72

	15.38

	link

	convnext-v2-large_3rdparty-fcmae_in1k

	197.96

	34.40

	link

	convnext-v2-huge_3rdparty-fcmae_in1k

	660.29

	115.00

	link

	byol_resnet50_16xb256-coslr-200e_in1k

	68.02

	4.11

	link

	densecl_resnet50_8xb32-coslr-200e_in1k

	64.85

	4.11

	link

	mocov2_resnet50_8xb32-coslr-200e_in1k

	55.93

	4.11

	link

	mocov3_resnet50_8xb512-amp-coslr-100e_in1k

	68.01

	4.11

	link

	mocov3_resnet50_8xb512-amp-coslr-300e_in1k

	68.01

	4.11

	link

	mocov3_resnet50_8xb512-amp-coslr-800e_in1k

	68.01

	4.11

	link

	mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k

	84.27

	4.61

	link

	mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k

	215.68

	17.58

	link

	mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k

	652.78

	61.60

	link

	simclr_resnet50_16xb256-coslr-200e_in1k

	27.97

	4.11

	link

	simclr_resnet50_16xb256-coslr-800e_in1k

	27.97

	4.11

	link

	simsiam_resnet50_8xb32-coslr-100e_in1k

	38.20

	4.11

	link

	simsiam_resnet50_8xb32-coslr-200e_in1k

	38.20

	4.11

	link

	swav_resnet50_8xb32-mcrop-coslr-200e_in1k-224px-96px

	28.35

	4.11

	link

	mae_vit-base-p16_8xb512-amp-coslr-300e_in1k

	111.91

	17.58

	link

	mae_vit-base-p16_8xb512-amp-coslr-400e_in1k

	111.91

	17.58

	link

	mae_vit-base-p16_8xb512-amp-coslr-800e_in1k

	111.91

	17.58

	link

	mae_vit-base-p16_8xb512-amp-coslr-1600e_in1k

	111.91

	17.58

	link

	mae_vit-large-p16_8xb512-amp-coslr-400e_in1k

	329.54

	61.60

	link

	mae_vit-large-p16_8xb512-amp-coslr-800e_in1k

	329.54

	61.60

	link

	mae_vit-large-p16_8xb512-amp-coslr-1600e_in1k

	329.54

	61.60

	link

	mae_vit-huge-p16_8xb512-amp-coslr-1600e_in1k

	657.07

	167.40

	link

	simmim_swin-base-w6_8xb256-amp-coslr-100e_in1k-192px

	89.87

	18.83

	link

	simmim_swin-base-w6_16xb128-amp-coslr-800e_in1k-192px

	89.87

	18.83

	link

	simmim_swin-large-w12_16xb128-amp-coslr-800e_in1k-192px

	199.92

	55.85

	link

	barlowtwins_resnet50_8xb256-coslr-300e_in1k

	174.54

	4.11

	link

	cae_beit-base-p16_8xb256-amp-coslr-300e_in1k

	288.43

	17.58

	link

	maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k

	85.88

	17.58

	link

	milan_vit-base-p16_16xb256-amp-coslr-400e_in1k

	111.91

	17.58

	link

	vit-base-p16_sam-pre_3rdparty_sa1b-1024px

	89.67

	486.00

	link

	vit-large-p16_sam-pre_3rdparty_sa1b-1024px

	308.00

	1494.00

	link

	vit-huge-p16_sam-pre_3rdparty_sa1b-1024px

	637.00

	2982.00

	link

	swin-t_glip-pre_3rdparty

	29.06

	4.51

	link

	swin-l_glip-pre_3rdparty_384px

	196.74

	104.08

	link

	vit-tiny-p14_eva02-pre_in21k

	5.50

	1.70

	link

	vit-small-p14_eva02-pre_in21k

	21.62

	6.14

	link

	vit-base-p14_eva02-pre_in21k

	85.77

	23.22

	link

	vit-large-p14_eva02-pre_in21k

	303.29

	81.15

	link

	vit-large-p14_eva02-pre_m38m

	303.29

	81.15

	link

	vit-small-p14_dinov2-pre_3rdparty

	22.06

	46.76

	link

	vit-base-p14_dinov2-pre_3rdparty

	86.58

	152.00

	link

	vit-large-p14_dinov2-pre_3rdparty

	304.00

	507.00

	link

	vit-giant-p14_dinov2-pre_3rdparty

	1136.00

	1784.00

	link

	itpn-clip-b_hivit-base-p16_8xb256-amp-coslr-800e_in1k

	233.00

	18.47

	link

	itpn-pixel_hivit-base-p16_8xb512-amp-coslr-800e_in1k

	103.00

	18.47

	link

	itpn-pixel_hivit-large-p16_8xb512-amp-coslr-800e_in1k

	314.00

	63.98

	link

	spark_sparse-resnet50_800e_in1k

	37.97

	4.10

	link

	spark_sparse-convnextv2-tiny_800e_in1k

	39.73

	4.47

	link

	mff_vit-base-p16_8xb512-amp-coslr-300e_in1k

	85.88

	17.58

	link

	mff_vit-base-p16_8xb512-amp-coslr-800e_in1k

	85.88

	17.58

	link

Image Classification

ImageNet-1k

	Model

	Params (M)

	Flops (G)

	Top-1 (%)

	Top-5 (%)

	Readme

	mobilenet-v2_8xb32_in1k

	3.50

	0.32

	71.86

	90.42

	link

	mobilenet-v3-small-050_3rdparty_in1k

	1.59

	0.02

	57.91

	80.19

	link

	mobilenet-v3-small-075_3rdparty_in1k

	2.04

	0.04

	65.23

	85.44

	link

	mobilenet-v3-small_8xb128_in1k

	2.54

	0.06

	66.68

	86.74

	link

	mobilenet-v3-small_3rdparty_in1k

	2.54

	0.06

	67.66

	87.41

	link

	mobilenet-v3-large_8xb128_in1k

	5.48

	0.23

	73.49

	91.31

	link

	mobilenet-v3-large_3rdparty_in1k

	5.48

	0.23

	74.04

	91.34

	link

	resnet18_8xb32_in1k

	11.69

	1.82

	69.9

	89.43

	link

	resnet34_8xb32_in1k

	2.18

	3.68

	73.62

	91.59

	link

	resnet50_8xb32_in1k

	25.56

	4.12

	76.55

	93.06

	link

	resnet101_8xb32_in1k

	44.55

	7.85

	77.97

	94.06

	link

	resnet152_8xb32_in1k

	60.19

	11.58

	78.48

	94.13

	link

	resnetv1d50_8xb32_in1k

	25.58

	4.36

	77.54

	93.57

	link

	resnetv1d101_8xb32_in1k

	44.57

	8.09

	78.93

	94.48

	link

	resnetv1d152_8xb32_in1k

	60.21

	11.82

	79.41

	94.7

	link

	resnet50_8xb32-fp16_in1k

	25.56

	4.12

	76.3

	93.07

	link

	resnet50_8xb256-rsb-a1-600e_in1k

	25.56

	4.12

	80.12

	94.78

	link

	resnet50_8xb256-rsb-a2-300e_in1k

	25.56

	4.12

	79.55

	94.37

	link

	resnet50_8xb256-rsb-a3-100e_in1k

	25.56

	4.12

	78.3

	93.8

	link

	resnetv1c50_8xb32_in1k

	25.58

	4.36

	77.01

	93.58

	link

	resnetv1c101_8xb32_in1k

	44.57

	8.09

	78.3

	94.27

	link

	resnetv1c152_8xb32_in1k

	60.21

	11.82

	78.76

	94.41

	link

	res2net50-w14-s8_3rdparty_8xb32_in1k

	25.06

	4.22

	78.14

	93.85

	link

	res2net50-w26-s8_3rdparty_8xb32_in1k

	48.40

	8.39

	79.2

	94.36

	link

	res2net101-w26-s4_3rdparty_8xb32_in1k

	45.21

	8.12

	79.19

	94.44

	link

	resnext50-32x4d_8xb32_in1k

	25.03

	4.27

	77.9

	93.66

	link

	resnext101-32x4d_8xb32_in1k

	44.18

	8.03

	78.61

	94.17

	link

	resnext101-32x8d_8xb32_in1k

	88.79

	16.50

	79.27

	94.58

	link

	resnext152-32x4d_8xb32_in1k

	59.95

	11.80

	78.88

	94.33

	link

	seresnet50_8xb32_in1k

	28.09

	4.13

	77.74

	93.84

	link

	seresnet101_8xb32_in1k

	49.33

	7.86

	78.26

	94.07

	link

	shufflenet-v1-1x_16xb64_in1k

	1.87

	0.15

	68.13

	87.81

	link

	shufflenet-v2-1x_16xb64_in1k

	2.28

	0.15

	69.55

	88.92

	link

	swin-tiny_16xb64_in1k

	28.29

	4.36

	81.18

	95.61

	link

	swin-small_16xb64_in1k

	49.61

	8.52

	83.02

	96.29

	link

	swin-base_16xb64_in1k

	87.77

	15.14

	83.36

	96.44

	link

	swin-tiny_3rdparty_in1k

	28.29

	4.36

	81.18

	95.52

	link

	swin-small_3rdparty_in1k

	49.61

	8.52

	83.21

	96.25

	link

	swin-base_3rdparty_in1k

	87.77

	15.14

	83.42

	96.44

	link

	swin-base_3rdparty_in1k-384

	87.90

	44.49

	84.49

	96.95

	link

	swin-base_in21k-pre-3rdparty_in1k

	87.77

	15.14

	85.16

	97.5

	link

	swin-base_in21k-pre-3rdparty_in1k-384

	87.90

	44.49

	86.44

	98.05

	link

	swin-large_in21k-pre-3rdparty_in1k

	196.53

	34.04

	86.24

	97.88

	link

	swin-large_in21k-pre-3rdparty_in1k-384

	196.74

	100.04

	87.25

	98.25

	link

	vgg11_8xb32_in1k

	132.86

	7.63

	68.75

	88.87

	link

	vgg13_8xb32_in1k

	133.05

	11.34

	70.02

	89.46

	link

	vgg16_8xb32_in1k

	138.36

	15.50

	71.62

	90.49

	link

	vgg19_8xb32_in1k

	143.67

	19.67

	72.41

	90.8

	link

	vgg11bn_8xb32_in1k

	132.87

	7.64

	70.67

	90.16

	link

	vgg13bn_8xb32_in1k

	133.05

	11.36

	72.12

	90.66

	link

	vgg16bn_8xb32_in1k

	138.37

	15.53

	73.74

	91.66

	link

	vgg19bn_8xb32_in1k

	143.68

	19.70

	74.68

	92.27

	link

	repvgg-A0_8xb32_in1k

	8.31

	1.36

	72.37

	90.56

	link

	repvgg-A1_8xb32_in1k

	12.79

	2.36

	74.23

	91.8

	link

	repvgg-A2_8xb32_in1k

	25.50

	5.12

	76.49

	93.09

	link

	repvgg-B0_8xb32_in1k

	3.42

	15.82

	75.27

	92.21

	link

	repvgg-B1_8xb32_in1k

	51.83

	11.81

	78.19

	94.04

	link

	repvgg-B1g2_8xb32_in1k

	41.36

	8.81

	77.87

	93.99

	link

	repvgg-B1g4_8xb32_in1k

	36.13

	7.30

	77.81

	93.77

	link

	repvgg-B2_8xb32_in1k

	80.32

	18.37

	78.58

	94.23

	link

	repvgg-B2g4_8xb32_in1k

	55.78

	11.33

	79.44

	94.72

	link

	repvgg-B3_8xb32_in1k

	110.96

	26.21

	80.58

	95.33

	link

	repvgg-B3g4_8xb32_in1k

	75.63

	16.06

	80.26

	95.15

	link

	repvgg-D2se_3rdparty_in1k

	120.39

	32.84

	81.81

	95.94

	link

	tnt-small-p16_3rdparty_in1k

	23.76

	3.36

	81.52

	95.73

	link

	vit-base-p32_in21k-pre_3rdparty_in1k-384px

	88.30

	13.06

	84.01

	97.08

	link

	vit-base-p16_32xb128-mae_in1k

	86.57

	17.58

	82.37

	96.15

	link

	vit-base-p16_in21k-pre_3rdparty_in1k-384px

	86.86

	55.54

	85.43

	97.77

	link

	vit-large-p16_in21k-pre_3rdparty_in1k-384px

	304.72

	191.21

	85.63

	97.63

	link

	t2t-vit-t-14_8xb64_in1k

	21.47

	4.34

	81.83

	95.84

	link

	t2t-vit-t-19_8xb64_in1k

	39.08

	7.80

	82.63

	96.18

	link

	t2t-vit-t-24_8xb64_in1k

	64.00

	12.69

	82.71

	96.09

	link

	tinyvit-5m_3rdparty_in1k

	5.39

	1.29

	79.02

	94.74

	link

	tinyvit-5m_in21k-distill-pre_3rdparty_in1k

	5.39

	1.29

	80.71

	95.57

	link

	tinyvit-11m_3rdparty_in1k

	11.00

	2.05

	81.44

	95.79

	link

	tinyvit-11m_in21k-distill-pre_3rdparty_in1k

	11.00

	2.05

	83.19

	96.53

	link

	tinyvit-21m_3rdparty_in1k

	21.20

	4.30

	83.08

	96.58

	link

	tinyvit-21m_in21k-distill-pre_3rdparty_in1k

	21.20

	4.30

	84.85

	97.27

	link

	tinyvit-21m_in21k-distill-pre_3rdparty_in1k-384px

	21.23

	13.85

	86.21

	97.77

	link

	tinyvit-21m_in21k-distill-pre_3rdparty_in1k-512px

	21.27

	27.15

	86.44

	97.89

	link

	mlp-mixer-base-p16_3rdparty_64xb64_in1k

	59.88

	12.61

	76.68

	92.25

	link

	mlp-mixer-large-p16_3rdparty_64xb64_in1k

	208.20

	44.57

	72.34

	88.02

	link

	conformer-tiny-p16_3rdparty_in1k

	23.52

	4.90

	81.31

	95.6

	link

	conformer-small-p16_3rdparty_in1k

	37.67

	10.31

	83.32

	96.46

	link

	conformer-small-p32_8xb128_in1k

	38.85

	7.09

	81.96

	96.02

	link

	conformer-base-p16_3rdparty_in1k

	83.29

	22.89

	83.82

	96.59

	link

	regnetx-400mf_8xb128_in1k

	5.16

	0.41

	72.56

	90.78

	link

	regnetx-800mf_8xb128_in1k

	7.26

	0.81

	74.76

	92.32

	link

	regnetx-1.6gf_8xb128_in1k

	9.19

	1.63

	76.84

	93.31

	link

	regnetx-3.2gf_8xb64_in1k

	3.21

	1.53

	78.09

	94.08

	link

	regnetx-4.0gf_8xb64_in1k

	22.12

	4.00

	78.6

	94.17

	link

	regnetx-6.4gf_8xb64_in1k

	26.21

	6.51

	79.38

	94.65

	link

	regnetx-8.0gf_8xb64_in1k

	39.57

	8.03

	79.12

	94.51

	link

	regnetx-12gf_8xb64_in1k

	46.11

	12.15

	79.67

	95.03

	link

	deit-tiny_4xb256_in1k

	5.72

	1.26

	74.5

	92.24

	link

	deit-tiny-distilled_3rdparty_in1k

	5.91

	1.27

	74.51

	91.9

	link

	deit-small_4xb256_in1k

	22.05

	4.61

	80.69

	95.06

	link

	deit-small-distilled_3rdparty_in1k

	22.44

	4.63

	81.17

	95.4

	link

	deit-base_16xb64_in1k

	86.57

	17.58

	81.76

	95.81

	link

	deit-base_3rdparty_in1k

	86.57

	17.58

	81.79

	95.59

	link

	deit-base-distilled_3rdparty_in1k

	87.34

	17.67

	83.33

	96.49

	link

	deit-base_224px-pre_3rdparty_in1k-384px

	86.86

	55.54

	83.04

	96.31

	link

	deit-base-distilled_224px-pre_3rdparty_in1k-384px

	87.63

	55.65

	85.55

	97.35

	link

	twins-pcpvt-small_3rdparty_8xb128_in1k

	24.11

	3.67

	81.14

	95.69

	link

	twins-pcpvt-base_3rdparty_8xb128_in1k

	43.83

	6.45

	82.66

	96.26

	link

	twins-pcpvt-large_3rdparty_16xb64_in1k

	60.99

	9.51

	83.09

	96.59

	link

	twins-svt-small_3rdparty_8xb128_in1k

	24.06

	2.82

	81.77

	95.57

	link

	twins-svt-base_8xb128_3rdparty_in1k

	56.07

	8.35

	83.13

	96.29

	link

	twins-svt-large_3rdparty_16xb64_in1k

	99.27

	14.82

	83.6

	96.5

	link

	efficientnet-b0_3rdparty_8xb32_in1k

	5.29

	0.42

	76.74

	93.17

	link

	efficientnet-b0_3rdparty_8xb32-aa_in1k

	5.29

	0.42

	77.26

	93.41

	link

	efficientnet-b0_3rdparty_8xb32-aa-advprop_in1k

	5.29

	0.42

	77.53

	93.61

	link

	efficientnet-b0_3rdparty-ra-noisystudent_in1k

	5.29

	0.42

	77.63

	94.0

	link

	efficientnet-b1_3rdparty_8xb32_in1k

	7.79

	0.74

	78.68

	94.28

	link

	efficientnet-b1_3rdparty_8xb32-aa_in1k

	7.79

	0.74

	79.2

	94.42

	link

	efficientnet-b1_3rdparty_8xb32-aa-advprop_in1k

	7.79

	0.74

	79.52

	94.43

	link

	efficientnet-b1_3rdparty-ra-noisystudent_in1k

	7.79

	0.74

	81.44

	95.83

	link

	efficientnet-b2_3rdparty_8xb32_in1k

	9.11

	1.07

	79.64

	94.8

	link

	efficientnet-b2_3rdparty_8xb32-aa_in1k

	9.11

	1.07

	80.21

	94.96

	link

	efficientnet-b2_3rdparty_8xb32-aa-advprop_in1k

	9.11

	1.07

	80.45

	95.07

	link

	efficientnet-b2_3rdparty-ra-noisystudent_in1k

	9.11

	1.07

	82.47

	96.23

	link

	efficientnet-b3_3rdparty_8xb32_in1k

	12.23

	1.95

	81.01

	95.34

	link

	efficientnet-b3_3rdparty_8xb32-aa_in1k

	12.23

	1.95

	81.58

	95.67

	link

	efficientnet-b3_3rdparty_8xb32-aa-advprop_in1k

	12.23

	1.95

	81.81

	95.69

	link

	efficientnet-b3_3rdparty-ra-noisystudent_in1k

	12.23

	1.95

	84.02

	96.89

	link

	efficientnet-b4_3rdparty_8xb32_in1k

	19.34

	4.66

	82.57

	96.09

	link

	efficientnet-b4_3rdparty_8xb32-aa_in1k

	19.34

	4.66

	82.95

	96.26

	link

	efficientnet-b4_3rdparty_8xb32-aa-advprop_in1k

	19.34

	4.66

	83.25

	96.44

	link

	efficientnet-b4_3rdparty-ra-noisystudent_in1k

	19.34

	4.66

	85.25

	97.52

	link

	efficientnet-b5_3rdparty_8xb32_in1k

	30.39

	10.80

	83.18

	96.47

	link

	efficientnet-b5_3rdparty_8xb32-aa_in1k

	30.39

	10.80

	83.82

	96.76

	link

	efficientnet-b5_3rdparty_8xb32-aa-advprop_in1k

	30.39

	10.80

	84.21

	96.98

	link

	efficientnet-b5_3rdparty-ra-noisystudent_in1k

	30.39

	10.80

	86.08

	97.75

	link

	efficientnet-b6_3rdparty_8xb32-aa_in1k

	43.04

	19.97

	84.05

	96.82

	link

	efficientnet-b6_3rdparty_8xb32-aa-advprop_in1k

	43.04

	19.97

	84.74

	97.14

	link

	efficientnet-b6_3rdparty-ra-noisystudent_in1k

	43.04

	19.97

	86.47

	97.87

	link

	efficientnet-b7_3rdparty_8xb32-aa_in1k

	66.35

	39.32

	84.38

	96.88

	link

	efficientnet-b7_3rdparty_8xb32-aa-advprop_in1k

	66.35

	39.32

	85.14

	97.23

	link

	efficientnet-b7_3rdparty-ra-noisystudent_in1k

	66.35

	39.32

	86.83

	98.08

	link

	efficientnet-b8_3rdparty_8xb32-aa-advprop_in1k

	87.41

	65.00

	85.38

	97.28

	link

	efficientnet-l2_3rdparty-ra-noisystudent_in1k-800px

	480.31

	174.20

	88.33

	98.65

	link

	efficientnet-l2_3rdparty-ra-noisystudent_in1k-475px

	480.31

	484.98

	88.18

	98.55

	link

	convnext-tiny_32xb128_in1k

	28.59

	4.46

	82.14

	96.06

	link

	convnext-tiny_32xb128-noema_in1k

	28.59

	4.46

	81.95

	95.89

	link

	convnext-tiny_in21k-pre_3rdparty_in1k

	28.59

	4.46

	82.9

	96.62

	link

	convnext-tiny_in21k-pre_3rdparty_in1k-384px

	28.59

	13.14

	84.11

	97.14

	link

	convnext-small_32xb128_in1k

	50.22

	8.69

	83.16

	96.56

	link

	convnext-small_32xb128-noema_in1k

	50.22

	8.69

	83.21

	96.48

	link

	convnext-small_in21k-pre_3rdparty_in1k

	50.22

	8.69

	84.59

	97.41

	link

	convnext-small_in21k-pre_3rdparty_in1k-384px

	50.22

	25.58

	85.75

	97.88

	link

	convnext-base_32xb128_in1k

	88.59

	15.36

	83.66

	96.74

	link

	convnext-base_32xb128-noema_in1k

	88.59

	15.36

	83.64

	96.61

	link

	convnext-base_3rdparty_in1k

	88.59

	15.36

	83.85

	96.74

	link

	convnext-base_3rdparty-noema_in1k

	88.59

	15.36

	83.71

	96.6

	link

	convnext-base_3rdparty_in1k-384px

	88.59

	45.21

	85.1

	97.34

	link

	convnext-base_in21k-pre_3rdparty_in1k

	88.59

	15.36

	85.81

	97.86

	link

	convnext-base_in21k-pre-3rdparty_in1k-384px

	88.59

	45.21

	86.82

	98.25

	link

	convnext-large_3rdparty_in1k

	197.77

	34.37

	84.3

	96.89

	link

	convnext-large_3rdparty_in1k-384px

	197.77

	101.10

	85.5

	97.59

	link

	convnext-large_in21k-pre_3rdparty_in1k

	197.77

	34.37

	86.61

	98.04

	link

	convnext-large_in21k-pre-3rdparty_in1k-384px

	197.77

	101.10

	87.46

	98.37

	link

	convnext-xlarge_in21k-pre_3rdparty_in1k

	350.20

	60.93

	86.97

	98.2

	link

	convnext-xlarge_in21k-pre-3rdparty_in1k-384px

	350.20

	179.20

	87.76

	98.55

	link

	hrnet-w18_3rdparty_8xb32_in1k

	21.30

	4.33

	76.75

	93.44

	link

	hrnet-w30_3rdparty_8xb32_in1k

	37.71

	8.17

	78.19

	94.22

	link

	hrnet-w32_3rdparty_8xb32_in1k

	41.23

	8.99

	78.44

	94.19

	link

	hrnet-w40_3rdparty_8xb32_in1k

	57.55

	12.77

	78.94

	94.47

	link

	hrnet-w44_3rdparty_8xb32_in1k

	67.06

	14.96

	78.88

	94.37

	link

	hrnet-w48_3rdparty_8xb32_in1k

	77.47

	17.36

	79.32

	94.52

	link

	hrnet-w64_3rdparty_8xb32_in1k

	128.06

	29.00

	79.46

	94.65

	link

	hrnet-w18_3rdparty_8xb32-ssld_in1k

	21.30

	4.33

	81.06

	95.7

	link

	hrnet-w48_3rdparty_8xb32-ssld_in1k

	77.47

	17.36

	83.63

	96.79

	link

	repmlp-base_3rdparty_8xb64_in1k

	68.24

	6.71

	80.41

	95.14

	link

	repmlp-base_3rdparty_8xb64_in1k-256px

	96.45

	9.69

	81.11

	95.5

	link

	wide-resnet50_3rdparty_8xb32_in1k

	68.88

	11.44

	78.48

	94.08

	link

	wide-resnet101_3rdparty_8xb32_in1k

	126.89

	22.81

	78.84

	94.28

	link

	wide-resnet50_3rdparty-timm_8xb32_in1k

	68.88

	11.44

	81.45

	95.53

	link

	van-tiny_3rdparty_in1k

	4.11

	0.88

	75.41

	93.02

	link

	van-small_3rdparty_in1k

	13.86

	2.52

	81.01

	95.63

	link

	van-base_3rdparty_in1k

	26.58

	5.03

	82.8

	96.21

	link

	van-large_3rdparty_in1k

	44.77

	8.99

	83.86

	96.73

	link

	cspdarknet50_3rdparty_8xb32_in1k

	27.64

	5.04

	80.05

	95.07

	link

	cspresnet50_3rdparty_8xb32_in1k

	21.62

	3.48

	79.55

	94.68

	link

	cspresnext50_3rdparty_8xb32_in1k

	20.57

	3.11

	79.96

	94.96

	link

	convmixer-768-32_3rdparty_in1k

	21.11

	19.62

	80.16

	95.08

	link

	convmixer-1024-20_3rdparty_in1k

	24.38

	5.55

	76.94

	93.36

	link

	convmixer-1536-20_3rdparty_in1k

	51.63

	48.71

	81.37

	95.61

	link

	densenet121_3rdparty_in1k

	7.98

	2.88

	74.96

	92.21

	link

	densenet169_3rdparty_in1k

	14.15

	3.42

	76.08

	93.11

	link

	densenet201_3rdparty_in1k

	20.01

	4.37

	77.32

	93.64

	link

	densenet161_3rdparty_in1k

	28.68

	7.82

	77.61

	93.83

	link

	poolformer-s12_3rdparty_32xb128_in1k

	11.92

	1.87

	77.24

	93.51

	link

	poolformer-s24_3rdparty_32xb128_in1k

	21.39

	3.51

	80.33

	95.05

	link

	poolformer-s36_3rdparty_32xb128_in1k

	30.86

	5.15

	81.43

	95.45

	link

	poolformer-m36_3rdparty_32xb128_in1k

	56.17

	8.96

	82.14

	95.71

	link

	poolformer-m48_3rdparty_32xb128_in1k

	73.47

	11.80

	82.51

	95.95

	link

	inception-v3_3rdparty_8xb32_in1k

	23.83

	5.75

	77.57

	93.58

	link

	mvitv2-tiny_3rdparty_in1k

	24.17

	4.70

	82.33

	96.15

	link

	mvitv2-small_3rdparty_in1k

	34.87

	7.00

	83.63

	96.51

	link

	mvitv2-base_3rdparty_in1k

	51.47

	10.16

	84.34

	96.86

	link

	mvitv2-large_3rdparty_in1k

	217.99

	43.87

	85.25

	97.14

	link

	edgenext-xxsmall_3rdparty_in1k

	1.33

	0.26

	71.2

	89.91

	link

	edgenext-xsmall_3rdparty_in1k

	2.34

	0.53

	74.86

	92.31

	link

	edgenext-small_3rdparty_in1k

	5.59

	1.25

	79.41

	94.53

	link

	edgenext-small-usi_3rdparty_in1k

	5.59

	1.25

	81.06

	95.34

	link

	edgenext-base_3rdparty_in1k

	18.51

	3.81

	82.48

	96.2

	link

	edgenext-base_3rdparty-usi_in1k

	18.51

	3.81

	83.67

	96.7

	link

	mobileone-s0_8xb32_in1k

	2.08

	0.27

	71.34

	89.87

	link

	mobileone-s1_8xb32_in1k

	4.76

	0.82

	75.72

	92.54

	link

	mobileone-s2_8xb32_in1k

	7.81

	1.30

	77.37

	93.34

	link

	mobileone-s3_8xb32_in1k

	10.08

	1.89

	78.06

	93.83

	link

	mobileone-s4_8xb32_in1k

	14.84

	2.98

	79.69

	94.46

	link

	efficientformer-l1_3rdparty_8xb128_in1k

	12.28

	1.30

	80.46

	94.99

	link

	efficientformer-l3_3rdparty_8xb128_in1k

	31.41

	3.74

	82.45

	96.18

	link

	efficientformer-l7_3rdparty_8xb128_in1k

	82.23

	10.16

	83.4

	96.6

	link

	swinv2-tiny-w8_3rdparty_in1k-256px

	28.35

	4.35

	81.76

	95.87

	link

	swinv2-tiny-w16_3rdparty_in1k-256px

	28.35

	4.40

	82.81

	96.23

	link

	swinv2-small-w8_3rdparty_in1k-256px

	49.73

	8.45

	83.74

	96.6

	link

	swinv2-small-w16_3rdparty_in1k-256px

	49.73

	8.57

	84.13

	96.83

	link

	swinv2-base-w8_3rdparty_in1k-256px

	87.92

	14.99

	84.2

	96.86

	link

	swinv2-base-w16_3rdparty_in1k-256px

	87.92

	15.14

	84.6

	97.05

	link

	swinv2-base-w16_in21k-pre_3rdparty_in1k-256px

	87.92

	15.14

	86.17

	97.88

	link

	swinv2-base-w24_in21k-pre_3rdparty_in1k-384px

	87.92

	34.07

	87.14

	98.23

	link

	swinv2-large-w16_in21k-pre_3rdparty_in1k-256px

	196.75

	33.86

	86.93

	98.06

	link

	swinv2-large-w24_in21k-pre_3rdparty_in1k-384px

	196.75

	76.20

	87.59

	98.27

	link

	deit3-small-p16_3rdparty_in1k

	22.06

	4.61

	81.35

	95.31

	link

	deit3-small-p16_3rdparty_in1k-384px

	22.21

	15.52

	83.43

	96.68

	link

	deit3-small-p16_in21k-pre_3rdparty_in1k

	22.06

	4.61

	83.06

	96.77

	link

	deit3-small-p16_in21k-pre_3rdparty_in1k-384px

	22.21

	15.52

	84.84

	97.48

	link

	deit3-medium-p16_3rdparty_in1k

	38.85

	8.00

	82.99

	96.22

	link

	deit3-medium-p16_in21k-pre_3rdparty_in1k

	38.85

	8.00

	84.56

	97.19

	link

	deit3-base-p16_3rdparty_in1k

	86.59

	17.58

	83.8

	96.55

	link

	deit3-base-p16_3rdparty_in1k-384px

	86.88

	55.54

	85.08

	97.25

	link

	deit3-base-p16_in21k-pre_3rdparty_in1k

	86.59

	17.58

	85.7

	97.75

	link

	deit3-base-p16_in21k-pre_3rdparty_in1k-384px

	86.88

	55.54

	86.73

	98.11

	link

	deit3-large-p16_3rdparty_in1k

	304.37

	61.60

	84.87

	97.01

	link

	deit3-large-p16_3rdparty_in1k-384px

	304.76

	191.21

	85.82

	97.6

	link

	deit3-large-p16_in21k-pre_3rdparty_in1k

	304.37

	61.60

	86.97

	98.24

	link

	deit3-large-p16_in21k-pre_3rdparty_in1k-384px

	304.76

	191.21

	87.73

	98.51

	link

	deit3-huge-p14_3rdparty_in1k

	632.13

	167.40

	85.21

	97.36

	link

	deit3-huge-p14_in21k-pre_3rdparty_in1k

	632.13

	167.40

	87.19

	98.26

	link

	hornet-tiny_3rdparty_in1k

	22.41

	3.98

	82.84

	96.24

	link

	hornet-tiny-gf_3rdparty_in1k

	22.99

	3.90

	82.98

	96.38

	link

	hornet-small_3rdparty_in1k

	49.53

	8.83

	83.79

	96.75

	link

	hornet-small-gf_3rdparty_in1k

	50.40

	8.71

	83.98

	96.77

	link

	hornet-base_3rdparty_in1k

	87.26

	15.58

	84.24

	96.94

	link

	hornet-base-gf_3rdparty_in1k

	88.42

	15.42

	84.32

	96.95

	link

	mobilevit-small_3rdparty_in1k

	5.58

	2.03

	78.25

	94.09

	link

	mobilevit-xsmall_3rdparty_in1k

	2.32

	1.05

	74.75

	92.32

	link

	mobilevit-xxsmall_3rdparty_in1k

	1.27

	0.42

	69.02

	88.91

	link

	davit-tiny_3rdparty_in1k

	28.36

	4.54

	82.24

	96.13

	link

	davit-small_3rdparty_in1k

	49.75

	8.80

	83.61

	96.75

	link

	davit-base_3rdparty_in1k

	87.95

	15.51

	84.09

	96.82

	link

	replknet-31B_3rdparty_in1k

	79.86

	15.64

	83.48

	96.57

	link

	replknet-31B_3rdparty_in1k-384px

	79.86

	45.95

	84.84

	97.34

	link

	replknet-31B_in21k-pre_3rdparty_in1k

	79.86

	15.64

	85.2

	97.56

	link

	replknet-31B_in21k-pre_3rdparty_in1k-384px

	79.86

	45.95

	85.99

	97.75

	link

	replknet-31L_in21k-pre_3rdparty_in1k-384px

	172.67

	97.24

	86.63

	98.0

	link

	replknet-XL_meg73m-pre_3rdparty_in1k-320px

	335.44

	129.57

	87.57

	98.39

	link

	beit-base-p16_beit-pre_8xb128-coslr-100e_in1k

	86.53

	17.58

	83.1

	

	link

	beit-base-p16_beit-in21k-pre_3rdparty_in1k

	86.53

	17.58

	85.28

	97.59

	link

	beit-base-p16_beitv2-pre_8xb128-coslr-100e_in1k

	86.53

	17.58

	85.0

	

	link

	beit-base-p16_beitv2-in21k-pre_3rdparty_in1k

	86.53

	17.58

	86.47

	97.99

	link

	vit-base-p16_eva-mae-style-pre_8xb128-coslr-100e_in1k

	86.57

	17.58

	83.7

	

	link

	vit-base-p16_eva-mae-style-pre_8xb2048-linear-coslr-100e_in1k

	86.57

	17.58

	69.0

	

	link

	beit-l-p14_eva-pre_3rdparty_in1k-196px

	304.14

	61.57

	87.94

	98.5

	link

	beit-l-p14_eva-in21k-pre_3rdparty_in1k-196px

	304.14

	61.57

	88.58

	98.65

	link

	beit-l-p14_eva-pre_3rdparty_in1k-336px

	304.53

	191.10

	88.66

	98.75

	link

	beit-l-p14_eva-in21k-pre_3rdparty_in1k-336px

	304.53

	191.10

	89.17

	98.86

	link

	beit-g-p14_eva-30m-in21k-pre_3rdparty_in1k-336px

	1013.01

	620.64

	89.61

	98.93

	link

	beit-g-p14_eva-30m-in21k-pre_3rdparty_in1k-560px

	1014.45

	1906.76

	89.71

	98.96

	link

	revvit-small_3rdparty_in1k

	22.44

	4.58

	79.87

	94.9

	link

	revvit-base_3rdparty_in1k

	87.34

	17.49

	81.81

	95.56

	link

	vit-base-p32_clip-openai-pre_3rdparty_in1k

	88.22

	4.36

	81.77

	95.89

	link

	vit-base-p32_clip-laion2b-pre_3rdparty_in1k

	88.22

	4.36

	82.46

	96.12

	link

	vit-base-p32_clip-laion2b-in12k-pre_3rdparty_in1k

	88.22

	4.36

	83.06

	96.49

	link

	vit-base-p32_clip-openai-in12k-pre_3rdparty_in1k-384px

	88.22

	12.66

	85.13

	97.42

	link

	vit-base-p32_clip-laion2b-in12k-pre_3rdparty_in1k-384px

	88.22

	12.66

	85.39

	97.67

	link

	vit-base-p16_clip-openai-pre_3rdparty_in1k

	86.57

	16.86

	85.3

	97.5

	link

	vit-base-p16_clip-laion2b-pre_3rdparty_in1k

	86.57

	16.86

	85.49

	97.59

	link

	vit-base-p16_clip-openai-in12k-pre_3rdparty_in1k

	86.57

	16.86

	85.99

	97.72

	link

	vit-base-p16_clip-laion2b-in12k-pre_3rdparty_in1k

	86.57

	16.86

	86.02

	97.76

	link

	vit-base-p32_clip-laion2b-in12k-pre_3rdparty_in1k-448px

	88.22

	17.20

	85.76

	97.63

	link

	vit-base-p16_clip-openai-pre_3rdparty_in1k-384px

	86.57

	49.37

	86.25

	97.9

	link

	vit-base-p16_clip-laion2b-pre_3rdparty_in1k-384px

	86.57

	49.37

	86.52

	97.97

	link

	vit-base-p16_clip-openai-in12k-pre_3rdparty_in1k-384px

	86.57

	49.37

	86.87

	98.05

	link

	vit-base-p16_clip-laion2b-in12k-pre_3rdparty_in1k-384px

	86.57

	49.37

	87.17

	98.02

	link

	mixmim-base_mixmim-pre_8xb128-coslr-100e_in1k

	88.34

	16.35

	84.63

	

	link

	efficientnetv2-b0_3rdparty_in1k

	7.14

	0.92

	78.52

	94.44

	link

	efficientnetv2-b1_3rdparty_in1k

	8.14

	1.44

	79.8

	94.89

	link

	efficientnetv2-b2_3rdparty_in1k

	10.10

	1.99

	80.63

	95.3

	link

	efficientnetv2-b3_3rdparty_in1k

	14.36

	3.50

	82.03

	95.88

	link

	efficientnetv2-s_3rdparty_in1k

	21.46

	9.72

	83.82

	96.67

	link

	efficientnetv2-m_3rdparty_in1k

	54.14

	26.88

	85.01

	97.26

	link

	efficientnetv2-l_3rdparty_in1k

	118.52

	60.14

	85.43

	97.31

	link

	efficientnetv2-s_in21k-pre_3rdparty_in1k

	21.46

	9.72

	84.29

	97.26

	link

	efficientnetv2-m_in21k-pre_3rdparty_in1k

	54.14

	26.88

	85.47

	97.76

	link

	efficientnetv2-l_in21k-pre_3rdparty_in1k

	118.52

	60.14

	86.31

	97.99

	link

	efficientnetv2-xl_in21k-pre_3rdparty_in1k

	208.12

	98.34

	86.39

	97.83

	link

	convnext-v2-atto_fcmae-pre_3rdparty_in1k

	3.71

	0.55

	76.64

	93.04

	link

	convnext-v2-femto_fcmae-pre_3rdparty_in1k

	5.23

	0.78

	78.48

	93.98

	link

	convnext-v2-pico_fcmae-pre_3rdparty_in1k

	9.07

	1.37

	80.31

	95.08

	link

	convnext-v2-nano_fcmae-pre_3rdparty_in1k

	15.62

	2.45

	81.86

	95.75

	link

	convnext-v2-nano_fcmae-in21k-pre_3rdparty_in1k

	15.62

	2.45

	82.04

	96.16

	link

	convnext-v2-tiny_fcmae-pre_3rdparty_in1k

	28.64

	4.47

	82.94

	96.29

	link

	convnext-v2-tiny_fcmae-in21k-pre_3rdparty_in1k

	28.64

	4.47

	83.89

	96.96

	link

	convnext-v2-nano_fcmae-in21k-pre_3rdparty_in1k-384px

	15.62

	7.21

	83.36

	96.75

	link

	convnext-v2-tiny_fcmae-in21k-pre_3rdparty_in1k-384px

	28.64

	13.14

	85.09

	97.63

	link

	convnext-v2-base_fcmae-pre_3rdparty_in1k

	88.72

	15.38

	84.87

	97.08

	link

	convnext-v2-base_fcmae-in21k-pre_3rdparty_in1k

	88.72

	15.38

	86.74

	98.02

	link

	convnext-v2-large_fcmae-pre_3rdparty_in1k

	197.96

	34.40

	85.76

	97.59

	link

	convnext-v2-large_fcmae-in21k-pre_3rdparty_in1k

	197.96

	34.40

	87.26

	98.24

	link

	convnext-v2-base_fcmae-in21k-pre_3rdparty_in1k-384px

	88.72

	45.21

	87.63

	98.42

	link

	convnext-v2-large_fcmae-in21k-pre_3rdparty_in1k-384px

	197.96

	101.10

	88.18

	98.52

	link

	convnext-v2-huge_fcmae-pre_3rdparty_in1k

	660.29

	115.00

	86.25

	97.75

	link

	convnext-v2-huge_fcmae-in21k-pre_3rdparty_in1k-384px

	660.29

	337.96

	88.68

	98.73

	link

	convnext-v2-huge_fcmae-in21k-pre_3rdparty_in1k-512px

	660.29

	600.81

	88.86

	98.74

	link

	levit-128s_3rdparty_in1k

	7.39

	0.31

	76.51

	92.9

	link

	levit-128_3rdparty_in1k

	8.83

	0.41

	78.58

	93.95

	link

	levit-192_3rdparty_in1k

	10.56

	0.67

	79.86

	94.75

	link

	levit-256_3rdparty_in1k

	18.38

	1.14

	81.59

	95.46

	link

	levit-384_3rdparty_in1k

	38.36

	2.37

	82.59

	95.95

	link

	vig-tiny_3rdparty_in1k

	7.18

	1.31

	74.4

	92.34

	link

	vig-small_3rdparty_in1k

	22.75

	4.54

	80.61

	95.28

	link

	vig-base_3rdparty_in1k

	20.68

	17.68

	82.62

	96.04

	link

	pvig-tiny_3rdparty_in1k

	9.46

	1.71

	78.38

	94.38

	link

	pvig-small_3rdparty_in1k

	29.02

	4.57

	82.0

	95.97

	link

	pvig-medium_3rdparty_in1k

	51.68

	8.89

	83.12

	96.35

	link

	pvig-base_3rdparty_in1k

	95.21

	16.86

	83.59

	96.52

	link

	xcit-nano-12-p16_3rdparty_in1k

	3.05

	0.56

	70.35

	89.98

	link

	xcit-nano-12-p16_3rdparty-dist_in1k

	3.05

	0.56

	72.36

	91.02

	link

	xcit-tiny-12-p16_3rdparty_in1k

	6.72

	1.24

	77.21

	93.62

	link

	xcit-tiny-12-p16_3rdparty-dist_in1k

	6.72

	1.24

	78.7

	94.12

	link

	xcit-nano-12-p16_3rdparty-dist_in1k-384px

	3.05

	1.64

	74.93

	92.42

	link

	xcit-nano-12-p8_3rdparty_in1k

	3.05

	2.16

	73.8

	92.08

	link

	xcit-nano-12-p8_3rdparty-dist_in1k

	3.05

	2.16

	76.17

	93.08

	link

	xcit-tiny-24-p16_3rdparty_in1k

	12.12

	2.34

	79.47

	94.85

	link

	xcit-tiny-24-p16_3rdparty-dist_in1k

	12.12

	2.34

	80.51

	95.17

	link

	xcit-tiny-12-p16_3rdparty-dist_in1k-384px

	6.72

	3.64

	80.58

	95.38

	link

	xcit-tiny-12-p8_3rdparty_in1k

	6.71

	4.81

	79.75

	94.88

	link

	xcit-tiny-12-p8_3rdparty-dist_in1k

	6.71

	4.81

	81.26

	95.46

	link

	xcit-small-12-p16_3rdparty_in1k

	26.25

	4.81

	81.87

	95.77

	link

	xcit-small-12-p16_3rdparty-dist_in1k

	26.25

	4.81

	83.12

	96.41

	link

	xcit-nano-12-p8_3rdparty-dist_in1k-384px

	3.05

	6.34

	77.69

	94.09

	link

	xcit-tiny-24-p16_3rdparty-dist_in1k-384px

	12.12

	6.87

	82.43

	96.2

	link

	xcit-small-24-p16_3rdparty_in1k

	47.67

	9.10

	82.38

	95.93

	link

	xcit-small-24-p16_3rdparty-dist_in1k

	47.67

	9.10

	83.7

	96.61

	link

	xcit-tiny-24-p8_3rdparty_in1k

	12.11

	9.21

	81.7

	95.9

	link

	xcit-tiny-24-p8_3rdparty-dist_in1k

	12.11

	9.21

	82.62

	96.16

	link

	xcit-tiny-12-p8_3rdparty-dist_in1k-384px

	6.71

	14.13

	82.46

	96.22

	link

	xcit-small-12-p16_3rdparty-dist_in1k-384px

	26.25

	14.14

	84.74

	97.19

	link

	xcit-medium-24-p16_3rdparty_in1k

	84.40

	16.13

	82.56

	95.82

	link

	xcit-medium-24-p16_3rdparty-dist_in1k

	84.40

	16.13

	84.15

	96.82

	link

	xcit-small-12-p8_3rdparty_in1k

	26.21

	18.69

	83.21

	96.41

	link

	xcit-small-12-p8_3rdparty-dist_in1k

	26.21

	18.69

	83.97

	96.81

	link

	xcit-small-24-p16_3rdparty-dist_in1k-384px

	47.67

	26.72

	85.1

	97.32

	link

	xcit-tiny-24-p8_3rdparty-dist_in1k-384px

	12.11

	27.05

	83.77

	96.72

	link

	xcit-small-24-p8_3rdparty_in1k

	47.63

	35.81

	83.62

	96.51

	link

	xcit-small-24-p8_3rdparty-dist_in1k

	47.63

	35.81

	84.68

	97.07

	link

	xcit-large-24-p16_3rdparty_in1k

	189.10

	35.86

	82.97

	95.86

	link

	xcit-large-24-p16_3rdparty-dist_in1k

	189.10

	35.86

	84.61

	97.07

	link

	xcit-medium-24-p16_3rdparty-dist_in1k-384px

	84.40

	47.39

	85.47

	97.49

	link

	xcit-small-12-p8_3rdparty-dist_in1k-384px

	26.21

	54.92

	85.12

	97.31

	link

	xcit-medium-24-p8_3rdparty_in1k

	84.32

	63.52

	83.61

	96.23

	link

	xcit-medium-24-p8_3rdparty-dist_in1k

	84.32

	63.52

	85.0

	97.16

	link

	xcit-small-24-p8_3rdparty-dist_in1k-384px

	47.63

	105.24

	85.57

	97.6

	link

	xcit-large-24-p16_3rdparty-dist_in1k-384px

	189.10

	105.35

	85.78

	97.6

	link

	xcit-large-24-p8_3rdparty_in1k

	188.93

	141.23

	84.23

	96.58

	link

	xcit-large-24-p8_3rdparty-dist_in1k

	188.93

	141.23

	85.14

	97.32

	link

	xcit-medium-24-p8_3rdparty-dist_in1k-384px

	84.32

	186.67

	85.87

	97.61

	link

	xcit-large-24-p8_3rdparty-dist_in1k-384px

	188.93

	415.00

	86.13

	97.75

	link

	resnet50_byol-pre_8xb512-linear-coslr-90e_in1k

	25.56

	4.11

	71.8

	

	link

	resnet50_densecl-pre_8xb32-linear-steplr-100e_in1k

	25.56

	4.11

	63.5

	

	link

	resnet50_mocov2-pre_8xb32-linear-steplr-100e_in1k

	25.56

	4.11

	67.5

	

	link

	resnet50_mocov3-100e-pre_8xb128-linear-coslr-90e_in1k

	25.56

	4.11

	69.6

	

	link

	resnet50_mocov3-300e-pre_8xb128-linear-coslr-90e_in1k

	25.56

	4.11

	72.8

	

	link

	resnet50_mocov3-800e-pre_8xb128-linear-coslr-90e_in1k

	25.56

	4.11

	74.4

	

	link

	vit-small-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k

	22.05

	4.61

	73.6

	

	link

	vit-base-p16_mocov3-pre_8xb64-coslr-150e_in1k

	86.57

	17.58

	83.0

	

	link

	vit-base-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k

	86.57

	17.58

	76.9

	

	link

	vit-large-p16_mocov3-pre_8xb64-coslr-100e_in1k

	304.33

	61.60

	83.7

	

	link

	resnet50_simclr-200e-pre_8xb512-linear-coslr-90e_in1k

	25.56

	4.11

	66.9

	

	link

	resnet50_simclr-800e-pre_8xb512-linear-coslr-90e_in1k

	25.56

	4.11

	69.2

	

	link

	resnet50_simsiam-100e-pre_8xb512-linear-coslr-90e_in1k

	25.56

	4.11

	68.3

	

	link

	resnet50_simsiam-200e-pre_8xb512-linear-coslr-90e_in1k

	25.56

	4.11

	69.8

	

	link

	resnet50_swav-pre_8xb32-linear-coslr-100e_in1k

	25.56

	4.11

	70.5

	

	link

	vit-base-p16_mae-300e-pre_8xb128-coslr-100e_in1k

	86.57

	17.58

	83.1

	

	link

	vit-base-p16_mae-400e-pre_8xb128-coslr-100e_in1k

	86.57

	17.58

	83.3

	

	link

	vit-base-p16_mae-800e-pre_8xb128-coslr-100e_in1k

	86.57

	17.58

	83.3

	

	link

	vit-base-p16_mae-1600e-pre_8xb128-coslr-100e_in1k

	86.57

	17.58

	83.5

	

	link

	vit-base-p16_mae-300e-pre_8xb2048-linear-coslr-90e_in1k

	86.57

	17.58

	60.8

	

	link

	vit-base-p16_mae-400e-pre_8xb2048-linear-coslr-90e_in1k

	86.57

	17.58

	62.5

	

	link

	vit-base-p16_mae-800e-pre_8xb2048-linear-coslr-90e_in1k

	86.57

	17.58

	65.1

	

	link

	vit-base-p16_mae-1600e-pre_8xb2048-linear-coslr-90e_in1k

	86.57

	17.58

	67.1

	

	link

	vit-large-p16_mae-400e-pre_8xb128-coslr-50e_in1k

	304.32

	61.60

	85.2

	

	link

	vit-large-p16_mae-800e-pre_8xb128-coslr-50e_in1k

	304.32

	61.60

	85.4

	

	link

	vit-large-p16_mae-1600e-pre_8xb128-coslr-50e_in1k

	304.32

	61.60

	85.7

	

	link

	vit-large-p16_mae-400e-pre_8xb2048-linear-coslr-90e_in1k

	304.33

	61.60

	70.7

	

	link

	vit-large-p16_mae-800e-pre_8xb2048-linear-coslr-90e_in1k

	304.33

	61.60

	73.7

	

	link

	vit-large-p16_mae-1600e-pre_8xb2048-linear-coslr-90e_in1k

	304.33

	61.60

	75.5

	

	link

	vit-huge-p14_mae-1600e-pre_8xb128-coslr-50e_in1k

	632.04

	167.40

	86.9

	

	link

	vit-huge-p14_mae-1600e-pre_32xb8-coslr-50e_in1k-448px

	633.03

	732.13

	87.3

	

	link

	swin-base-w6_simmim-100e-pre_8xb256-coslr-100e_in1k-192px

	87.75

	11.30

	82.7

	

	link

	swin-base-w7_simmim-100e-pre_8xb256-coslr-100e_in1k

	87.77

	15.47

	83.5

	

	link

	swin-base-w6_simmim-800e-pre_8xb256-coslr-100e_in1k-192px

	87.77

	15.47

	83.8

	

	link

	swin-large-w14_simmim-800e-pre_8xb256-coslr-100e_in1k

	196.85

	38.85

	84.8

	

	link

	resnet50_barlowtwins-pre_8xb32-linear-coslr-100e_in1k

	25.56

	4.11

	71.8

	

	link

	beit-base-p16_cae-pre_8xb128-coslr-100e_in1k

	86.68

	17.58

	83.2

	

	link

	vit-base-p16_maskfeat-pre_8xb256-coslr-100e_in1k

	86.57

	17.58

	83.4

	

	link

	vit-base-p16_milan-pre_8xb128-coslr-100e_in1k

	86.57

	17.58

	85.3

	

	link

	vit-base-p16_milan-pre_8xb2048-linear-coslr-100e_in1k

	86.57

	17.58

	78.9

	

	link

	riformer-s12_in1k

	11.91

	1.82

	76.9

	93.06

	link

	riformer-s24_in1k

	21.39

	3.41

	80.28

	94.8

	link

	riformer-s36_in1k

	30.86

	5.00

	81.29

	95.41

	link

	riformer-m36_in1k

	56.17

	8.80

	82.57

	95.99

	link

	riformer-m48_in1k

	73.47

	11.59

	82.75

	96.11

	link

	riformer-s12_in1k-384

	11.91

	5.36

	78.29

	93.93

	link

	riformer-s24_in1k-384

	21.39

	10.03

	81.36

	95.4

	link

	riformer-s36_in1k-384

	30.86

	14.70

	82.22

	95.95

	link

	riformer-m36_in1k-384

	56.17

	25.86

	83.39

	96.4

	link

	riformer-m48_in1k-384

	73.47

	34.06

	83.7

	96.6

	link

	vit-tiny-p14_eva02-in21k-pre_3rdparty_in1k-336px

	5.76

	4.68

	80.69

	95.54

	link

	vit-small-p14_eva02-in21k-pre_3rdparty_in1k-336px

	22.13

	15.48

	85.78

	97.6

	link

	vit-base-p14_eva02-in21k-pre_3rdparty_in1k-448px

	87.13

	107.11

	88.29

	98.53

	link

	vit-base-p14_eva02-in21k-pre_in21k-medft_3rdparty_in1k-448px

	87.13

	107.11

	88.47

	98.62

	link

	vit-large-p14_eva02-in21k-pre_in21k-medft_3rdparty_in1k-448px

	305.10

	362.33

	89.65

	98.95

	link

	vit-large-p14_eva02_m38m-pre_in21k-medft_3rdparty_in1k-448px

	305.10

	362.33

	89.83

	99.0

	link

	hivit-tiny-p16_16xb64_in1k

	19.18

	4.60

	82.1

	

	link

	hivit-small-p16_16xb64_in1k

	37.53

	9.07

	None

	

	link

	hivit-base-p16_16xb64_in1k

	79.05

	18.47

	None

	

	link

	resnet50_spark-pre_300e_in1k

	23.52

	1.31

	80.1

	94.9

	link

	convnextv2-tiny_spark-pre_300e_in1k

	28.64

	4.47

	82.8

	96.3

	link

	vit-base-p16_mff-300e-pre_8xb128-coslr-100e_in1k

	86.57

	17.58

	83.0

	

	link

	vit-base-p16_mff-800e-pre_8xb128-coslr-100e_in1k

	86.57

	17.58

	83.7

	

	link

	vit-base-p16_mff-300e-pre_8xb2048-linear-coslr-90e_in1k

	86.57

	17.58

	64.2

	

	link

	vit-base-p16_mff-800e-pre_8xb2048-linear-coslr-90e_in1k

	86.57

	17.58

	68.3

	

	link

CIFAR-10

	Model

	Params (M)

	Flops (G)

	Top-1 (%)

	Readme

	resnet18_8xb16_cifar10

	11.17

	0.56

	94.82

	link

	resnet34_8xb16_cifar10

	21.28

	1.16

	95.34

	link

	resnet50_8xb16_cifar10

	23.52

	1.31

	95.55

	link

	resnet101_8xb16_cifar10

	42.51

	2.52

	95.58

	link

	resnet152_8xb16_cifar10

	58.16

	3.74

	95.76

	link

CIFAR-100

	Model

	Params (M)

	Flops (G)

	Top-1 (%)

	Top-5 (%)

	Readme

	resnet50_8xb16_cifar100

	23.71

	1.31

	79.90

	95.19

	link

CUB-200-2011

	Model

	Params (M)

	Flops (G)

	Top-1 (%)

	Readme

	resnet50_8xb8_cub

	23.92

	16.48

	88.45

	link

	swin-large_8xb8_cub-384px

	195.51

	100.04

	91.87

	link

CIFAR100

	Model

	Params (M)

	Flops (G)

	Top-1 (%)

	Readme

	cn-clip_resnet50_zeroshot-cls_cifar100

	77.00

	

	40.70

	link

	cn-clip_vit-base-p16_zeroshot-cls_cifar100

	188.00

	

	64.50

	link

	cn-clip_vit-large-p14_zeroshot-cls_cifar100

	406.00

	

	74.80

	link

	cn-clip_vit-huge-p14_zeroshot-cls_cifar100

	958.00

	

	79.10

	link

Multi-Label Classification

PASCAL VOC 2007

	Model

	Params (M)

	Flops (G)

	CF1

	OF1

	mAP

	Readme

	resnet101-csra_1xb16_voc07-448px

	23.55

	4.12

	89.16

	90.80

	94.98

	link

Image Retrieval

InShop

	Model

	Params (M)

	Flops (G)

	Recall@1

	mAP@10

	Readme

	resnet50-arcface_inshop

	31.69

	16.57

	90.18

	69.30

	link

ArcFace

ArcFace: Additive Angular Margin Loss for Deep Face Recognition [https://arxiv.org/abs/1801.07698]

Abstract

Recently, a popular line of research in face recognition is adopting margins in the well-established softmax loss function to maximize class separability. In this paper, we first introduce an Additive Angular Margin Loss (ArcFace), which not only has a clear geometric interpretation but also significantly enhances the discriminative power. Since ArcFace is susceptible to the massive label noise, we further propose sub-center ArcFace, in which each class contains K sub-centers and training samples only need to be close to any of the K positive sub-centers. Sub-center ArcFace encourages one dominant sub-class that contains the majority of clean faces and non-dominant sub-classes that include hard or noisy faces. Based on this self-propelled isolation, we boost the performance through automatically purifying raw web faces under massive real-world noise. Besides discriminative feature embedding, we also explore the inverse problem, mapping feature vectors to face images. Without training any additional generator or discriminator, the pre-trained ArcFace model can generate identity-preserved face images for both subjects inside and outside the training data only by using the network gradient and Batch Normalization (BN) priors. Extensive experiments demonstrate that ArcFace can enhance the discriminative feature embedding as well as strengthen the generative face synthesis.

 BarlowTwins

BarlowTwins

Barlow Twins: Self-Supervised Learning via Redundancy Reduction [https://arxiv.org/abs/2103.03230]

Abstract

Self-supervised learning (SSL) is rapidly closing the gap with supervised methods on large computer vision benchmarks. A successful approach to SSL is to learn embeddings which are invariant to distortions of the input sample. However, a recurring issue with this approach is the existence of trivial constant solutions. Most current methods avoid such solutions by careful implementation details. We propose an objective function that naturally avoids collapse by measuring the cross-correlation matrix between the outputs of two identical networks fed with distorted versions of a sample, and making it as close to the identity matrix as possible. This causes the embedding vectors of distorted versions of a sample to be similar, while minimizing the redundancy between the components of these vectors. The method is called Barlow Twins, owing to neuroscientist H. Barlow’s redundancy-reduction principle applied to a pair of identical networks. Barlow Twins does not require large batches nor asymmetry between the network twins such as a predictor network, gradient stopping, or a moving average on the weight updates. Intriguingly it benefits from very high-dimensional output vectors. Barlow Twins outperforms previous methods on ImageNet for semi-supervised classification in the low-data regime, and is on par with current state of the art for ImageNet classification with a linear classifier head, and for transfer tasks of classification and object detection.

 BEiT

BEiT

BEiT: BERT Pre-Training of Image Transformers [https://arxiv.org/abs/2106.08254]

Abstract

We introduce a self-supervised vision representation model BEiT, which stands for Bidirectional Encoder representation from Image Transformers. Following BERT developed in the natural language processing area, we propose a masked image modeling task to pretrain vision Transformers. Specifically, each image has two views in our pre-training, i.e, image patches (such as 16x16 pixels), and visual tokens (i.e., discrete tokens). We first “tokenize” the original image into visual tokens. Then we randomly mask some image patches and fed them into the backbone Transformer. The pre-training objective is to recover the original visual tokens based on the corrupted image patches. After pre-training BEiT, we directly fine-tune the model parameters on downstream tasks by appending task layers upon the pretrained encoder. Experimental results on image classification and semantic segmentation show that our model achieves competitive results with previous pre-training methods. For example, base-size BEiT achieves 83.2% top-1 accuracy on ImageNet-1K, significantly outperforming from-scratch DeiT training (81.8%) with the same setup. Moreover, large-size BEiT obtains 86.3% only using ImageNet-1K, even outperforming ViT-L with supervised pre-training on ImageNet-22K (85.2%).

 BEiTv2

BEiTv2

BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers [https://arxiv.org/abs/2208.06366]

Abstract

Masked image modeling (MIM) has demonstrated impressive results in self-supervised representation learning by recovering corrupted image patches. However, most existing studies operate on low-level image pixels, which hinders the exploitation of high-level semantics for representation models. In this work, we propose to use a semantic-rich visual tokenizer as the reconstruction target for masked prediction, providing a systematic way to promote MIM from pixel-level to semantic-level. Specifically, we propose vector-quantized knowledge distillation to train the tokenizer, which discretizes a continuous semantic space to compact codes. We then pretrain vision Transformers by predicting the original visual tokens for the masked image patches. Furthermore, we introduce a patch aggregation strategy which associates discrete image patches to enhance global semantic representation. Experiments on image classification and semantic segmentation show that BEiT v2 outperforms all compared MIM methods. On ImageNet-1K (224 size), the base-size BEiT v2 achieves 85.5% top-1 accuracy for fine-tuning and 80.1% top-1 accuracy for linear probing. The large-size BEiT v2 obtains 87.3% top-1 accuracy for ImageNet-1K (224 size) fine-tuning, and 56.7% mIoU on ADE20K for semantic segmentation.

 BLIP

BLIP

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation [https://arxiv.org/abs/2201.12086]

Abstract

Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks. However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to video-language tasks in a zero-shot manner.

 BLIP-2

BLIP-2

BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models [http://arxiv.org/abs/2301.12597]

Abstract

The cost of vision-and-language pre-training has become increasingly prohibitive due to end-toend training of large-scale models. This paper proposes BLIP-2, a generic and efficient pretraining strategy that bootstraps vision-language pre-training from off-the-shelf frozen pre-trained image encoders and frozen large language models. BLIP-2 bridges the modality gap with a lightweight Querying Transformer, which is pretrained in two stages. The first stage bootstraps vision-language representation learning from a frozen image encoder. The second stage bootstraps vision-to-language generative learning from a frozen language model. BLIP-2 achieves state-of-the-art performance on various visionlanguage tasks, despite having significantly fewer trainable parameters than existing methods. For example, our model outperforms Flamingo80B by 8.7% on zero-shot VQAv2 with 54x fewer trainable parameters. We also demonstrate the model’s emerging capabilities of zero-shot image-to-text generation that can follow natural language instructions.

 BYOL

BYOL

Bootstrap your own latent: A new approach to self-supervised Learning [https://arxiv.org/abs/2006.07733]

Abstract

Bootstrap Your Own Latent (BYOL) is a new approach to self-supervised image representation learning. BYOL relies on two neural networks, referred to as online and target networks, that interact and learn from each other. From an augmented view of an image, we train the online network to predict the target network representation of the same image under a different augmented view. At the same time, we update the target network with a slow-moving average of the online network.

 CAE

CAE

Context Autoencoder for Self-Supervised Representation Learning [https://arxiv.org/abs/2202.03026]

Abstract

We present a novel masked image modeling (MIM) approach, context autoencoder (CAE), for self-supervised learning. We randomly partition the image into two sets: visible patches and masked patches. The CAE architecture consists of: (i) an encoder that takes visible patches as input and outputs their latent representations, (ii) a latent context regressor that predicts the masked patch representations from the visible patch representations that are not updated in this regressor, (iii) a decoder that takes the estimated masked patch representations as input and makes predictions for the masked patches, and (iv) an alignment module that aligns the masked patch representation estimation with the masked patch representations computed from the encoder. In comparison to previous MIM methods that couple the encoding and decoding roles, e.g., using a single module in BEiT, our approach attempts to separate the encoding role (content understanding) from the decoding role (making predictions for masked patches) using different modules, improving the content understanding capability. In addition, our approach makes predictions from the visible patches to the masked patches in the latent representation space that is expected to take on semantics. In addition, we present the explanations about why contrastive pretraining and supervised pretraining perform similarly and why MIM potentially performs better. We demonstrate the effectiveness of our CAE through superior transfer performance in downstream tasks: semantic segmentation, and object detection and instance segmentation.

 ChineseCLIP

ChineseCLIP

Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese [https://arxiv.org/abs/2211.01335]

Abstract

The tremendous success of CLIP (Radford et al., 2021) has promoted the research and application of contrastive learning for vision-language pretraining. In this work, we construct a large-scale dataset of image-text pairs in Chinese, where most data are retrieved from publicly available datasets, and we pretrain Chinese CLIP models on the new dataset. We develop 5 Chinese CLIP models of multiple sizes, spanning from 77 to 958 million parameters. Furthermore, we propose a two-stage pretraining method, where the model is first trained with the image encoder frozen and then trained with all parameters being optimized, to achieve enhanced model performance. Our comprehensive experiments demonstrate that Chinese CLIP can achieve the state-of-the-art performance on MUGE, Flickr30K-CN, and COCO-CN in the setups of zero-shot learning and finetuning, and it is able to achieve competitive performance in zero-shot image classification based on the evaluation on the ELEVATER benchmark (Li et al., 2022). We have released our codes, models, and demos in https://github.com/OFA-Sys/Chinese-CLIP

 CLIP

CLIP

Learning Transferable Visual Models From Natural Language Supervision [https://arxiv.org/abs/2103.00020]

Abstract

State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on. We release our code and pre-trained model weights at this https URL.

 Conformer

Conformer

Conformer: Local Features C