

Welcome to MMClassification’s documentation!

You can switch between Chinese and English documentation in the lower-left corner of the layout.

您可以在页面左下角切换中英文文档。

Get Started

	Prerequisites

	Installation

	Getting Started

Tutorials

	Tutorial 1: Learn about Configs

	Tutorial 2: Fine-tune Models

	Tutorial 3: Customize Dataset

	Tutorial 4: Custom Data Pipelines

	Tutorial 5: Adding New Modules

	Tutorial 6: Customize Schedule

	Tutorial 7: Customize Runtime Settings

Model zoo

	Model Zoo Summary

	Model Zoo

	Conformer

	ConvMixer

	ConvNeXt

	CSPNet

	CSRA

	DeiT

	DenseNet

	EfficientFormer

	EfficientNet

	HorNet

	HRNet

	Mlp-Mixer

	MobileNet V2

	MobileNet V3

	MViT V2

	PoolFormer

	RegNet

	RepMLP

	RepVGG

	Res2Net

	ResNet

	ResNeXt

	SE-ResNet

	ShuffleNet V1

	ShuffleNet V2

	Swin Transformer

	Swin Transformer V2

	Tokens-to-Token ViT

	TNT

	Twins

	Visual Attention Network

	VGG

	Vision Transformer

	Wide-ResNet

Useful Tools and Scripts

	Pytorch to ONNX (Experimental)

	ONNX to TensorRT (Experimental)

	Pytorch to TorchScript (Experimental)

	Model Serving

	Visualization

	Analysis

	Miscellaneous

Community

	Contributing to OpenMMLab

API Reference

	mmcls.apis

	mmcls.core

	mmcls.models

	mmcls.models.utils

	mmcls.datasets

	Data Transformations

	Batch Augmentation

	mmcls.utils

Notes

	Changelog

	Compatibility of MMClassification 0.x

	Frequently Asked Questions

Device Support

	NPU (HUAWEI Ascend)

Language Switch

	English [https://mmclassification.readthedocs.io/en/latest/]

	简体中文 [https://mmclassification.readthedocs.io/zh_CN/latest/]

Indices and tables

	Index

	Search Page

Prerequisites

In this section we demonstrate how to prepare an environment with PyTorch.

MMClassification works on Linux, Windows and macOS. It requires Python 3.6+, CUDA 9.2+ and PyTorch 1.5+.

Note

If you are experienced with PyTorch and have already installed it, just skip this part and jump to the next section. Otherwise, you can follow these steps for the preparation.

Step 1. Download and install Miniconda from the official website [https://docs.conda.io/en/latest/miniconda.html].

Step 2. Create a conda environment and activate it.

conda create --name openmmlab python=3.8 -y
conda activate openmmlab

Step 3. Install PyTorch following official instructions [https://pytorch.org/get-started/locally/], e.g.

On GPU platforms:

conda install pytorch torchvision -c pytorch

Warning

This command will automatically install the latest version PyTorch and cudatoolkit, please check whether they matches your environment.

On CPU platforms:

conda install pytorch torchvision cpuonly -c pytorch

Installation

We recommend that users follow our best practices to install MMClassification. However, the whole process is highly customizable. See Customize Installation section for more information.

Best Practices

Step 0. Install MMCV [https://github.com/open-mmlab/mmcv] using MIM [https://github.com/open-mmlab/mim].

pip install -U openmim
mim install mmcv-full

Step 1. Install MMClassification.

According to your needs, we support two install modes:

	Install from source (Recommended): You want to develop your own image classification task or new features based on MMClassification framework. For example, you want to add new dataset or new models. And you can use all tools we provided.

	Install as a Python package: You just want to call MMClassification’s APIs or import MMClassification’s modules in your project.

Install from source

In this case, install mmcls from source:

git clone https://github.com/open-mmlab/mmclassification.git
cd mmclassification
pip install -v -e .
"-v" means verbose, or more output
"-e" means installing a project in editable mode,
thus any local modifications made to the code will take effect without reinstallation.

Optionally, if you want to contribute to MMClassification or experience experimental functions, please checkout to the dev branch:

git checkout dev

Install as a Python package

Just install with pip.

pip install mmcls

Verify the installation

To verify whether MMClassification is installed correctly, we provide some sample codes to run an inference demo.

Step 1. We need to download config and checkpoint files.

mim download mmcls --config resnet50_8xb32_in1k --dest .

Step 2. Verify the inference demo.

Option (a). If you install mmcls from source, just run the following command:

python demo/image_demo.py demo/demo.JPEG resnet50_8xb32_in1k.py resnet50_8xb32_in1k_20210831-ea4938fc.pth --device cpu

You will see the output result dict including pred_label, pred_score and pred_class in your terminal.
And if you have graphical interface (instead of remote terminal etc.), you can enable --show option to show
the demo image with these predictions in a window.

Option (b). If you install mmcls as a python package, open you python interpreter and copy&paste the following codes.

from mmcls.apis import init_model, inference_model

config_file = 'resnet50_8xb32_in1k.py'
checkpoint_file = 'resnet50_8xb32_in1k_20210831-ea4938fc.pth'
model = init_model(config_file, checkpoint_file, device='cpu') # or device='cuda:0'
inference_model(model, 'demo/demo.JPEG')

You will see a dict printed, including the predicted label, score and category name.

Customize Installation

CUDA versions

When installing PyTorch, you need to specify the version of CUDA. If you are
not clear on which to choose, follow our recommendations:

	For Ampere-based NVIDIA GPUs, such as GeForce 30 series and NVIDIA A100, CUDA 11 is a must.

	For older NVIDIA GPUs, CUDA 11 is backward compatible, but CUDA 10.2 offers better compatibility and is more lightweight.

Please make sure the GPU driver satisfies the minimum version requirements. See this table [https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-major-component-versions__table-cuda-toolkit-driver-versions] for more information.

Note

Installing CUDA runtime libraries is enough if you follow our best practices,
because no CUDA code will be compiled locally. However if you hope to compile
MMCV from source or develop other CUDA operators, you need to install the
complete CUDA toolkit from NVIDIA’s website [https://developer.nvidia.com/cuda-downloads],
and its version should match the CUDA version of PyTorch. i.e., the specified
version of cudatoolkit in conda install command.

Install MMCV without MIM

MMCV contains C++ and CUDA extensions, thus depending on PyTorch in a complex
way. MIM solves such dependencies automatically and makes the installation
easier. However, it is not a must.

To install MMCV with pip instead of MIM, please follow
MMCV installation guides [https://mmcv.readthedocs.io/en/latest/get_started/installation.html].
This requires manually specifying a find-url based on PyTorch version and its CUDA version.

For example, the following command install mmcv-full built for PyTorch 1.10.x and CUDA 11.3.

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html

Install on CPU-only platforms

MMClassification can be built for CPU only environment. In CPU mode you can
train (requires MMCV version >= 1.4.4), test or inference a model.

Some functionalities are gone in this mode, usually GPU-compiled ops. But don’t
worry, almost all models in MMClassification don’t depends on these ops.

Install on Google Colab

Google Colab [https://research.google.com/] usually has PyTorch installed,
thus we only need to install MMCV and MMClassification with the following
commands.

Step 1. Install MMCV [https://github.com/open-mmlab/mmcv] using MIM [https://github.com/open-mmlab/mim].

!pip3 install openmim
!mim install mmcv-full

Step 2. Install MMClassification from the source.

!git clone https://github.com/open-mmlab/mmclassification.git
%cd mmclassification
!pip install -e .

Step 3. Verification.

import mmcls
print(mmcls.__version__)
Example output: 0.23.0 or newer

Note

Within Jupyter, the exclamation mark ! is used to call external executables and %cd is a magic command [https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-cd] to change the current working directory of Python.

Using MMClassification with Docker

We provide a Dockerfile [https://github.com/open-mmlab/mmclassification/blob/master/docker/Dockerfile]
to build an image. Ensure that your docker version [https://docs.docker.com/engine/install/] >=19.03.

build an image with PyTorch 1.8.1, CUDA 10.2
If you prefer other versions, just modified the Dockerfile
docker build -t mmclassification docker/

Run it with

docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmclassification/data mmclassification

Trouble shooting

If you have some issues during the installation, please first view the FAQ page.
You may open an issue [https://github.com/open-mmlab/mmclassification/issues/new/choose]
on GitHub if no solution is found.

Getting Started

This page provides basic tutorials about the usage of MMClassification.

Prepare datasets

It is recommended to symlink the dataset root to $MMCLASSIFICATION/data.
If your folder structure is different, you may need to change the corresponding paths in config files.

mmclassification
├── mmcls
├── tools
├── configs
├── docs
├── data
│ ├── imagenet
│ │ ├── meta
│ │ ├── train
│ │ ├── val
│ ├── cifar
│ │ ├── cifar-10-batches-py
│ ├── mnist
│ │ ├── train-images-idx3-ubyte
│ │ ├── train-labels-idx1-ubyte
│ │ ├── t10k-images-idx3-ubyte
│ │ ├── t10k-labels-idx1-ubyte

For ImageNet, it has multiple versions, but the most commonly used one is ILSVRC 2012 [http://www.image-net.org/challenges/LSVRC/2012/]. It can be accessed with the following steps.

	Register an account and login to the download page [http://www.image-net.org/download-images].

	Find download links for ILSVRC2012 and download the following two files

	ILSVRC2012_img_train.tar (~138GB)

	ILSVRC2012_img_val.tar (~6.3GB)

	Untar the downloaded files

	Download meta data using this script [https://github.com/BVLC/caffe/blob/master/data/ilsvrc12/get_ilsvrc_aux.sh]

For MNIST, CIFAR10 and CIFAR100, the datasets will be downloaded and unzipped automatically if they are not found.

For using custom datasets, please refer to Tutorial 3: Customize Dataset.

Inference with pretrained models

We provide scripts to inference a single image, inference a dataset and test a dataset (e.g., ImageNet).

Inference a single image

python demo/image_demo.py ${IMAGE_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE}

Example
python demo/image_demo.py demo/demo.JPEG configs/resnet/resnet50_8xb32_in1k.py \
 https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb32_in1k_20210831-ea4938fc.pth

Inference and test a dataset

	single GPU

	CPU

	single node multiple GPU

	multiple node

You can use the following commands to infer a dataset.

single-gpu
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--metrics ${METRICS}] [--out ${RESULT_FILE}]

CPU: disable GPUs and run single-gpu testing script
export CUDA_VISIBLE_DEVICES=-1
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--metrics ${METRICS}] [--out ${RESULT_FILE}]

multi-gpu
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--metrics ${METRICS}] [--out ${RESULT_FILE}]

multi-node in slurm environment
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--metrics ${METRICS}] [--out ${RESULT_FILE}] --launcher slurm

Optional arguments:

	RESULT_FILE: Filename of the output results. If not specified, the results will not be saved to a file. Support formats include json, yaml and pickle.

	METRICS：Items to be evaluated on the results, like accuracy, precision, recall, etc.

Examples:

Infer ResNet-50 on CIFAR10 validation set to get predicted labels and their corresponding predicted scores.

python tools/test.py configs/resnet/resnet50_8xb16_cifar10.py \
 https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar10_20210528-f54bfad9.pth \
 --out result.pkl

Train a model

MMClassification implements distributed training and non-distributed training,
which uses MMDistributedDataParallel and MMDataParallel respectively.

All outputs (log files and checkpoints) will be saved to the working directory,
which is specified by work_dir in the config file.

By default we evaluate the model on the validation set after each epoch, you can change the evaluation interval by adding the interval argument in the training config.

evaluation = dict(interval=12) # Evaluate the model per 12 epochs.

Train with a single GPU

python tools/train.py ${CONFIG_FILE} [optional arguments]

If you want to specify the working directory in the command, you can add an argument --work_dir ${YOUR_WORK_DIR}.

Train with CPU

The process of training on the CPU is consistent with single GPU training. We just need to disable GPUs before the training process.

export CUDA_VISIBLE_DEVICES=-1

And then run the script above.

Warning

The process of training on the CPU is consistent with single GPU training. We just need to disable GPUs before the training process.

Train with multiple GPUs in single machine

./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]

Optional arguments are:

	--no-validate (not suggested): By default, the codebase will perform evaluation at every k (default value is 1) epochs during the training. To disable this behavior, use --no-validate.

	--work-dir ${WORK_DIR}: Override the working directory specified in the config file.

	--resume-from ${CHECKPOINT_FILE}: Resume from a previous checkpoint file.

Difference between resume-from and load-from:
resume-from loads both the model weights and optimizer status, and the epoch is also inherited from the specified checkpoint. It is usually used for resuming the training process that is interrupted accidentally.
load-from only loads the model weights and the training epoch starts from 0. It is usually used for finetuning.

Train with multiple machines

If you launch with multiple machines simply connected with ethernet, you can simply run following commands:

On the first machine:

NNODES=2 NODE_RANK=0 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.sh $CONFIG $GPUS

On the second machine:

NNODES=2 NODE_RANK=1 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.sh $CONFIG $GPUS

Usually it is slow if you do not have high speed networking like InfiniBand.

If you run MMClassification on a cluster managed with slurm [https://slurm.schedmd.com/], you can use the script slurm_train.sh. (This script also supports single machine training.)

[GPUS=${GPUS}] ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR}

You can check slurm_train.sh [https://github.com/open-mmlab/mmclassification/blob/master/tools/slurm_train.sh] for full arguments and environment variables.

If you have just multiple machines connected with ethernet, you can refer to
PyTorch launch utility [https://pytorch.org/docs/stable/distributed_deprecated.html#launch-utility].
Usually it is slow if you do not have high speed networking like InfiniBand.

Launch multiple jobs on a single machine

If you launch multiple jobs on a single machine, e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs,
you need to specify different ports (29500 by default) for each job to avoid communication conflict.

If you use dist_train.sh to launch training jobs, you can set the port in commands.

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh ${CONFIG_FILE} 4
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh ${CONFIG_FILE} 4

If you use launch training jobs with Slurm, you need to modify the config files (usually the 6th line from the bottom in config files) to set different communication ports.

In config1.py,

dist_params = dict(backend='nccl', port=29500)

In config2.py,

dist_params = dict(backend='nccl', port=29501)

Then you can launch two jobs with config1.py ang config2.py.

CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config1.py ${WORK_DIR}
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config2.py ${WORK_DIR}

Train with IPU

The process of training on the IPU is consistent with single GPU training. We just need to have IPU machine and environment
and add an extra argument --ipu-replicas ${IPU_NUM}

Useful tools

We provide lots of useful tools under tools/ directory.

Get the FLOPs and params (experimental)

We provide a script adapted from flops-counter.pytorch [https://github.com/sovrasov/flops-counter.pytorch] to compute the FLOPs and params of a given model.

python tools/analysis_tools/get_flops.py ${CONFIG_FILE} [--shape ${INPUT_SHAPE}]

You will get the result like this.

==============================
Input shape: (3, 224, 224)
Flops: 4.12 GFLOPs
Params: 25.56 M
==============================

Warning

This tool is still experimental and we do not guarantee that the number is correct. You may well use the result for simple comparisons, but double check it before you adopt it in technical reports or papers.

	FLOPs are related to the input shape while parameters are not. The default input shape is (1, 3, 224, 224).

	Some operators are not counted into FLOPs like GN and custom operators. Refer to mmcv.cnn.get_model_complexity_info() [https://github.com/open-mmlab/mmcv/blob/master/mmcv/cnn/utils/flops_counter.py] for details.

Publish a model

Before you publish a model, you may want to

	Convert model weights to CPU tensors.

	Delete the optimizer states.

	Compute the hash of the checkpoint file and append the hash id to the filename.

python tools/convert_models/publish_model.py ${INPUT_FILENAME} ${OUTPUT_FILENAME}

E.g.,

python tools/convert_models/publish_model.py work_dirs/resnet50/latest.pth imagenet_resnet50.pth

The final output filename will be imagenet_resnet50_{date}-{hash id}.pth.

Tutorials

Currently, we provide five tutorials for users.

	learn about config

	finetune models

	add new dataset

	design data pipeline

	add new modules

	customize schedule

	customize runtime settings.

Tutorial 1: Learn about Configs

MMClassification mainly uses python files as configs. The design of our configuration file system integrates modularity and inheritance, facilitating users to conduct various experiments. All configuration files are placed in the configs folder, which mainly contains the primitive configuration folder of _base_ and many algorithm folders such as resnet, swin_transformer, vision_transformer, etc.

If you wish to inspect the config file, you may run python tools/misc/print_config.py /PATH/TO/CONFIG to see the complete config.

	Config File and Checkpoint Naming Convention

	Config File Structure

	Inherit and Modify Config File

	Use intermediate variables in configs

	Ignore some fields in the base configs

	Use some fields in the base configs

	Modify config through script arguments

	Import user-defined modules

	FAQ

Config File and Checkpoint Naming Convention

We follow the below convention to name config files. Contributors are advised to follow the same style. The config file names are divided into four parts: algorithm info, module information, training information and data information. Logically, different parts are concatenated by underscores '_', and words in the same part are concatenated by dashes '-'.

{algorithm info}_{module info}_{training info}_{data info}.py

	algorithm info：algorithm information, model name and neural network architecture, such as resnet, etc.;

	module info： module information is used to represent some special neck, head and pretrain information;

	training info：Training information, some training schedule, including batch size, lr schedule, data augment and the like;

	data info：Data information, dataset name, input size and so on, such as imagenet, cifar, etc.;

Algorithm information

The main algorithm name and the corresponding branch architecture information. E.g：

	resnet50

	mobilenet-v3-large

	vit-small-patch32 : patch32 represents the size of the partition in ViT algorithm;

	seresnext101-32x4d : SeResNet101 network structure, 32x4d means that groups and width_per_group are 32 and 4 respectively in Bottleneck;

Module information

Some special neck, head and pretrain information. In classification tasks, pretrain information is the most commonly used:

	in21k-pre : pre-trained on ImageNet21k;

	in21k-pre-3rd-party : pre-trained on ImageNet21k and the checkpoint is converted from a third-party repository;

Training information

Training schedule, including training type, batch size, lr schedule, data augment, special loss functions and so on:

	format {gpu x batch_per_gpu}, such as 8xb32

Training type (mainly seen in the transformer network, such as the ViT algorithm, which is usually divided into two training type: pre-training and fine-tuning):

	ft : configuration file for fine-tuning

	pt : configuration file for pretraining

Training recipe. Usually, only the part that is different from the original paper will be marked. These methods will be arranged in the order {pipeline aug}-{train aug}-{loss trick}-{scheduler}-{epochs}.

	coslr-200e : use cosine scheduler to train 200 epochs

	autoaug-mixup-lbs-coslr-50e : use autoaug, mixup, label smooth, cosine scheduler to train 50 epochs

Data information

	in1k : ImageNet1k dataset, default to use the input image size of 224x224;

	in21k : ImageNet21k dataset, also called ImageNet22k dataset, default to use the input image size of 224x224;

	in1k-384px : Indicates that the input image size is 384x384;

	cifar100

Config File Name Example

repvgg-D2se_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py

	repvgg-D2se: Algorithm information

	repvgg: The main algorithm.

	D2se: The architecture.

	deploy: Module information, means the backbone is in the deploy state.

	4xb64-autoaug-lbs-mixup-coslr-200e: Training information.

	4xb64: Use 4 GPUs and the size of batches per GPU is 64.

	autoaug: Use AutoAugment in training pipeline.

	lbs: Use label smoothing loss.

	mixup: Use mixup training augment method.

	coslr: Use cosine learning rate scheduler.

	200e: Train the model for 200 epochs.

	in1k: Dataset information. The config is for ImageNet1k dataset and the input size is 224x224.

Note

Some configuration files currently do not follow this naming convention, and related files will be updated in the near future.

Checkpoint Naming Convention

The naming of the weight mainly includes the configuration file name, date and hash value.

{config_name}_{date}-{hash}.pth

Config File Structure

There are four kinds of basic component file in the configs/_base_ folders, namely：

	models [https://github.com/open-mmlab/mmclassification/tree/master/configs/_base_/models]

	datasets [https://github.com/open-mmlab/mmclassification/tree/master/configs/_base_/datasets]

	schedules [https://github.com/open-mmlab/mmclassification/tree/master/configs/_base_/schedules]

	runtime [https://github.com/open-mmlab/mmclassification/blob/master/configs/_base_/default_runtime.py]

You can easily build your own training config file by inherit some base config files. And the configs that are composed by components from _base_ are called primitive.

For easy understanding, we use ResNet50 primitive config [https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb32_in1k.py] as a example and comment the meaning of each line. For more detaile, please refer to the API documentation.

base = [
 '../_base_/models/resnet50.py', # model
 '../_base_/datasets/imagenet_bs32.py', # data
 '../_base_/schedules/imagenet_bs256.py', # training schedule
 '../_base_/default_runtime.py' # runtime setting
]

The four parts are explained separately below, and the above-mentioned ResNet50 primitive config are also used as an example.

model

The parameter "model" is a python dictionary in the configuration file, which mainly includes information such as network structure and loss function:

	type ： Classifier name, MMCls supports ImageClassifier, refer to API documentation [https://mmclassification.readthedocs.io/en/latest/api/models.html#classifier].

	backbone ： Backbone configs, refer to API documentation [https://mmclassification.readthedocs.io/en/latest/api/models.html#backbones] for available options.

	neck ：Neck network name, MMCls supports GlobalAveragePooling, please refer to API documentation [https://mmclassification.readthedocs.io/en/latest/api/models.html#necks].

	head: Head network name, MMCls supports single-label and multi-label classification head networks, available options refer to API documentation [https://mmclassification.readthedocs.io/en/latest/api/models.html#heads].

	loss: Loss function type, supports CrossEntropyLoss, LabelSmoothLoss [https://github.com/open-mmlab/mmclassification/blob/master/configs/_base_/models/resnet50_label_smooth.py] etc., For available options, refer to API documentation [https://mmclassification.readthedocs.io/en/latest/api/models.html#losses].

	train_cfg ：Training augment config, MMCls supports mixup [https://github.com/open-mmlab/mmclassification/blob/master/configs/_base_/models/resnet50_mixup.py], cutmix [https://github.com/open-mmlab/mmclassification/blob/master/configs/_base_/models/resnet50_cutmix.py] and other augments.

Note

The ‘type’ in the configuration file is not a constructed parameter, but a class name.

model = dict(
 type='ImageClassifier', # Classifier name
 backbone=dict(
 type='ResNet', # Backbones name
 depth=50, # depth of backbone, ResNet has options of 18, 34, 50, 101, 152.
 num_stages=4, # number of stages，The feature maps generated by these states are used as the input for the subsequent neck and head.
 out_indices=(3,), # The output index of the output feature maps.
 frozen_stages=-1, # the stage to be frozen, '-1' means not be forzen
 style='pytorch'), # The style of backbone, 'pytorch' means that stride 2 layers are in 3x3 conv, 'caffe' means stride 2 layers are in 1x1 convs.
 neck=dict(type='GlobalAveragePooling'), # neck network name
 head=dict(
 type='LinearClsHead', # linear classification head，
 num_classes=1000, # The number of output categories, consistent with the number of categories in the dataset
 in_channels=2048, # The number of input channels, consistent with the output channel of the neck
 loss=dict(type='CrossEntropyLoss', loss_weight=1.0), # Loss function configuration information
 topk=(1, 5), # Evaluation index, Top-k accuracy rate, here is the accuracy rate of top1 and top5
))

data

The parameter "data" is a python dictionary in the configuration file, which mainly includes information to construct dataloader:

	samples_per_gpu : the BatchSize of each GPU when building the dataloader

	workers_per_gpu : the number of threads per GPU when building dataloader

	train ｜ val ｜ test : config to construct dataset

	type: Dataset name, MMCls supports ImageNet, Cifar etc., refer to API documentation [https://mmclassification.readthedocs.io/en/latest/api/datasets.html]

	data_prefix : Dataset root directory

	pipeline : Data processing pipeline, refer to related tutorial CUSTOM DATA PIPELINES [https://mmclassification.readthedocs.io/en/latest/tutorials/data_pipeline.html]

The parameter evaluation is also a dictionary, which is the configuration information of evaluation hook, mainly including evaluation interval, evaluation index, etc..

dataset settings
dataset_type = 'ImageNet' # dataset name，
img_norm_cfg = dict(# Image normalization config to normalize the input images
 mean=[123.675, 116.28, 103.53], # Mean values used to pre-training the pre-trained backbone models
 std=[58.395, 57.12, 57.375], # Standard variance used to pre-training the pre-trained backbone models
 to_rgb=True) # Whether to invert the color channel, rgb2bgr or bgr2rgb.
train data pipeline
train_pipeline = [
 dict(type='LoadImageFromFile'), # First pipeline to load images from file path
 dict(type='RandomResizedCrop', size=224), # RandomResizedCrop
 dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'), # Randomly flip the picture horizontally with a probability of 0.5
 dict(type='Normalize', **img_norm_cfg), # normalization
 dict(type='ImageToTensor', keys=['img']), # convert image from numpy into torch.Tensor
 dict(type='ToTensor', keys=['gt_label']), # convert gt_label into torch.Tensor
 dict(type='Collect', keys=['img', 'gt_label']) # Pipeline that decides which keys in the data should be passed to the detector
]
test data pipeline
test_pipeline = [
 dict(type='LoadImageFromFile'),
 dict(type='Resize', size=(256, -1)),
 dict(type='CenterCrop', crop_size=224),
 dict(type='Normalize', **img_norm_cfg),
 dict(type='ImageToTensor', keys=['img']),
 dict(type='Collect', keys=['img']) # do not pass gt_label while testing
]
data = dict(
 samples_per_gpu=32, # Batch size of a single GPU
 workers_per_gpu=2, # Worker to pre-fetch data for each single GPU
 train=dict(# Train dataset config
 train=dict(# train data config
 type=dataset_type, # dataset name
 data_prefix='data/imagenet/train', # Dataset root, when ann_file does not exist, the category information is automatically obtained from the root folder
 pipeline=train_pipeline), # train data pipeline
 val=dict(# val data config
 type=dataset_type,
 data_prefix='data/imagenet/val',
 ann_file='data/imagenet/meta/val.txt', # ann_file existes, the category information is obtained from file
 pipeline=test_pipeline),
 test=dict(# test data config
 type=dataset_type,
 data_prefix='data/imagenet/val',
 ann_file='data/imagenet/meta/val.txt',
 pipeline=test_pipeline))
evaluation = dict(# The config to build the evaluation hook, refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/evaluation/eval_hooks.py#L7 for more details.
 interval=1, # Evaluation interval
 metric='accuracy') # Metrics used during evaluation

training schedule

Mainly include optimizer settings, optimizer hook settings, learning rate schedule and runner settings:

	optimizer: optimizer setting , support all optimizers in pytorch, refer to related mmcv [https://mmcv.readthedocs.io/en/latest/_modules/mmcv/runner/optimizer/default_constructor.html#DefaultOptimizerConstructor] documentation.

	optimizer_config: optimizer hook configuration file, such as setting gradient limit, refer to related mmcv [https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/optimizer.py#L8] code.

	lr_config: Learning rate scheduler, supports “CosineAnnealing”, “Step”, “Cyclic”, etc. refer to related mmcv [https://mmcv.readthedocs.io/en/latest/_modules/mmcv/runner/hooks/lr_updater.html#LrUpdaterHook] documentation for more options.

	runner: For runner, please refer to mmcv for runner [https://mmcv.readthedocs.io/en/latest/understand_mmcv/runner.html] introduction document.

he configuration file used to build the optimizer, support all optimizers in PyTorch.
optimizer = dict(type='SGD', # Optimizer type
 lr=0.1, # Learning rate of optimizers, see detail usages of the parameters in the documentation of PyTorch
 momentum=0.9, # Momentum
 weight_decay=0.0001) # Weight decay of SGD
Config used to build the optimizer hook, refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/optimizer.py#L8 for implementation details.
optimizer_config = dict(grad_clip=None) # Most of the methods do not use gradient clip
Learning rate scheduler config used to register LrUpdater hook
lr_config = dict(policy='step', # The policy of scheduler, also support CosineAnnealing, Cyclic, etc. Refer to details of supported LrUpdater from https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py#L9.
 step=[30, 60, 90]) # Steps to decay the learning rate
runner = dict(type='EpochBasedRunner', # Type of runner to use (i.e. IterBasedRunner or EpochBasedRunner)
 max_epochs=100) # Runner that runs the workflow in total max_epochs. For IterBasedRunner use `max_iters`

runtime setting

This part mainly includes saving the checkpoint strategy, log configuration, training parameters, breakpoint weight path, working directory, etc..

Config to set the checkpoint hook, Refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/checkpoint.py for implementation.
checkpoint_config = dict(interval=1) # The save interval is 1
config to register logger hook
log_config = dict(
 interval=100, # Interval to print the log
 hooks=[
 dict(type='TextLoggerHook'), # The Tensorboard logger is also supported
 # dict(type='TensorboardLoggerHook')
])

dist_params = dict(backend='nccl') # Parameters to setup distributed training, the port can also be set.
log_level = 'INFO' # The output level of the log.
resume_from = None # Resume checkpoints from a given path, the training will be resumed from the epoch when the checkpoint's is saved.
workflow = [('train', 1)] # Workflow for runner. [('train', 1)] means there is only one workflow and the workflow named 'train' is executed once.
work_dir = 'work_dir' # Directory to save the model checkpoints and logs for the current experiments.

Inherit and Modify Config File

For easy understanding, we recommend contributors to inherit from existing methods.

For all configs under the same folder, it is recommended to have only one primitive config. All other configs should inherit from the primitive config. In this way, the maximum of inheritance level is 3.

For example, if your config file is based on ResNet with some other modification, you can first inherit the basic ResNet structure, dataset and other training setting by specifying _base_ ='./resnet50_8xb32_in1k.py' (The path relative to your config file), and then modify the necessary parameters in the config file. A more specific example, now we want to use almost all configs in configs/resnet/resnet50_8xb32_in1k.py, but change the number of training epochs from 100 to 300, modify when to decay the learning rate, and modify the dataset path, you can create a new config file configs/resnet/resnet50_8xb32-300e_in1k.py with content as below:

base = './resnet50_8xb32_in1k.py'

runner = dict(max_epochs=300)
lr_config = dict(step=[150, 200, 250])

data = dict(
 train=dict(data_prefix='mydata/imagenet/train'),
 val=dict(data_prefix='mydata/imagenet/train',),
 test=dict(data_prefix='mydata/imagenet/train',)
)

Use intermediate variables in configs

Some intermediate variables are used in the configuration file. The intermediate variables make the configuration file clearer and easier to modify.

For example, train_pipeline / test_pipeline is the intermediate variable of the data pipeline. We first need to define train_pipeline / test_pipeline, and then pass them to data. If you want to modify the size of the input image during training and testing, you need to modify the intermediate variables of train_pipeline / test_pipeline.

img_norm_cfg = dict(
 mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
 dict(type='LoadImageFromFile'),
 dict(type='RandomResizedCrop', size=384, backend='pillow',),
 dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
 dict(type='Normalize', **img_norm_cfg),
 dict(type='ImageToTensor', keys=['img']),
 dict(type='ToTensor', keys=['gt_label']),
 dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
 dict(type='LoadImageFromFile'),
 dict(type='Resize', size=384, backend='pillow'),
 dict(type='Normalize', **img_norm_cfg),
 dict(type='ImageToTensor', keys=['img']),
 dict(type='Collect', keys=['img'])
]
data = dict(
 train=dict(pipeline=train_pipeline),
 val=dict(pipeline=test_pipeline),
 test=dict(pipeline=test_pipeline))

Ignore some fields in the base configs

Sometimes, you need to set _delete_=True to ignore some domain content in the basic configuration file. You can refer to mmcv [https://mmcv.readthedocs.io/en/latest/understand_mmcv/config.html#inherit-from-base-config-with-ignored-fields] for more instructions.

The following is an example. If you want to use cosine schedule in the above ResNet50 case, just using inheritance and directly modify it will report get unexcepected keyword'step' error, because the 'step' field of the basic config in lr_config domain information is reserved, and you need to add _delete_ =True to ignore the content of lr_config related fields in the basic configuration file:

base = '../../configs/resnet/resnet50_8xb32_in1k.py'

lr_config = dict(
 delete=True,
 policy='CosineAnnealing',
 min_lr=0,
 warmup='linear',
 by_epoch=True,
 warmup_iters=5,
 warmup_ratio=0.1
)

Use some fields in the base configs

Sometimes, you may refer to some fields in the _base_ config, so as to avoid duplication of definitions. You can refer to mmcv [https://mmcv.readthedocs.io/en/latest/understand_mmcv/config.html#reference-variables-from-base] for some more instructions.

The following is an example of using auto augment in the training data preprocessing pipeline， refer to configs/_base_/datasets/imagenet_bs64_autoaug.py [https://github.com/open-mmlab/mmclassification/blob/master/configs/_base_/datasets/imagenet_bs64_autoaug.py]. When defining train_pipeline, just add the definition file name of auto augment to _base_, and then use {{_base_.auto_increasing_policies}} to reference the variables:

base = ['./pipelines/auto_aug.py']

dataset settings
dataset_type = 'ImageNet'
img_norm_cfg = dict(
 mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
 dict(type='LoadImageFromFile'),
 dict(type='RandomResizedCrop', size=224),
 dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
 dict(type='AutoAugment', policies={{_base_.auto_increasing_policies}}),
 dict(type='Normalize', **img_norm_cfg),
 dict(type='ImageToTensor', keys=['img']),
 dict(type='ToTensor', keys=['gt_label']),
 dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [...]
data = dict(
 samples_per_gpu=64,
 workers_per_gpu=2,
 train=dict(..., pipeline=train_pipeline),
 val=dict(..., pipeline=test_pipeline))
evaluation = dict(interval=1, metric='accuracy')

Modify config through script arguments

When users use the script “tools/train.py” or “tools/test.py” to submit tasks or use some other tools, they can directly modify the content of the configuration file used by specifying the --cfg-options parameter.

	Update config keys of dict chains.

The config options can be specified following the order of the dict keys in the original config.
For example, --cfg-options model.backbone.norm_eval=False changes the all BN modules in model backbones to train mode.

	Update keys inside a list of configs.

Some config dicts are composed as a list in your config. For example, the training pipeline data.train.pipeline is normally a list
e.g. [dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), ...]. If you want to change 'flip_prob=0.5' to 'flip_prob=0.0' in the pipeline,
you may specify --cfg-options data.train.pipeline.1.flip_prob=0.0.

	Update values of list/tuples.

If the value to be updated is a list or a tuple. For example, the config file normally sets workflow=[('train', 1)]. If you want to
change this key, you may specify --cfg-options workflow="[(train,1),(val,1)]". Note that the quotation mark ” is necessary to
support list/tuple data types, and that NO white space is allowed inside the quotation marks in the specified value.

Import user-defined modules

Note

This part may only be used when using MMClassification as a third party library to build your own project, and beginners can skip it.

After studying the follow-up tutorials ADDING NEW DATASET [https://mmclassification.readthedocs.io/en/latest/tutorials/new_dataset.html], CUSTOM DATA PIPELINES [https://mmclassification.readthedocs.io/en/latest/tutorials/data_pipeline.html], ADDING NEW MODULES [https://mmclassification.readthedocs.io/en/latest/tutorials/new_modules.html]. You may use MMClassification to complete your project and create new classes of datasets, models, data enhancements, etc. in the project. In order to streamline the code, you can use MMClassification as a third-party library, you just need to keep your own extra code and import your own custom module in the configuration files. For examples, you may refer to OpenMMLab Algorithm Competition Project [https://github.com/zhangrui-wolf/openmmlab-competition-2021] .

Add the following code to your own configuration files:

custom_imports = dict(
 imports=['your_dataset_class',
 'your_transforme_class',
 'your_model_class',
 'your_module_class'],
 allow_failed_imports=False)

FAQ

	None

Tutorial 2: Fine-tune Models

Classification models pre-trained on the ImageNet dataset have been demonstrated to be effective for other datasets and other downstream tasks.
This tutorial provides instructions for users to use the models provided in the Model Zoo for other datasets to obtain better performance.

There are two steps to fine-tune a model on a new dataset.

	Add support for the new dataset following Tutorial 3: Customize Dataset.

	Modify the configs as will be discussed in this tutorial.

Assume we have a ResNet-50 model pre-trained on the ImageNet-2012 dataset and want
to take the fine-tuning on the CIFAR-10 dataset, we need to modify five parts in the
config.

Inherit base configs

At first, create a new config file
configs/tutorial/resnet50_finetune_cifar.py to store our configs. Of course,
the path can be customized by yourself.

To reuse the common parts among different configs, we support inheriting
configs from multiple existing configs. To fine-tune a ResNet-50 model, the new
config needs to inherit configs/_base_/models/resnet50.py to build the basic
structure of the model. To use the CIFAR-10 dataset, the new config can also
simply inherit configs/_base_/datasets/cifar10_bs16.py. For runtime settings such as
training schedules, the new config needs to inherit
configs/_base_/default_runtime.py.

To inherit all above configs, put the following code at the config file.

base = [
 '../_base_/models/resnet50.py',
 '../_base_/datasets/cifar10_bs16.py', '../_base_/default_runtime.py'
]

Besides, you can also choose to write the whole contents rather than use inheritance,
like configs/lenet/lenet5_mnist.py [https://github.com/open-mmlab/mmclassification/blob/master/configs/lenet/lenet5_mnist.py].

Modify model

When fine-tuning a model, usually we want to load the pre-trained backbone
weights and train a new classification head.

To load the pre-trained backbone, we need to change the initialization config
of the backbone and use Pretrained initialization function. Besides, in the
init_cfg, we use prefix='backbone' to tell the initialization
function to remove the prefix of keys in the checkpoint, for example, it will
change backbone.conv1 to conv1. And here we use an online checkpoint, it
will be downloaded during training, you can also download the model manually
and use a local path.

And then we need to modify the head according to the class numbers of the new
datasets by just changing num_classes in the head.

model = dict(
 backbone=dict(
 init_cfg=dict(
 type='Pretrained',
 checkpoint='https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb32_in1k_20210831-ea4938fc.pth',
 prefix='backbone',
)),
 head=dict(num_classes=10),
)

Tip

Here we only need to set the part of configs we want to modify, because the
inherited configs will be merged and get the entire configs.

Sometimes, we want to freeze the first several layers’ parameters of the
backbone, that will help the network to keep ability to extract low-level
information learnt from pre-trained model. In MMClassification, you can simply
specify how many layers to freeze by frozen_stages argument. For example, to
freeze the first two layers’ parameters, just use the following config:

model = dict(
 backbone=dict(
 frozen_stages=2,
 init_cfg=dict(
 type='Pretrained',
 checkpoint='https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb32_in1k_20210831-ea4938fc.pth',
 prefix='backbone',
)),
 head=dict(num_classes=10),
)

Note

Not all backbones support the frozen_stages argument by now. Please check
the docs [https://mmclassification.readthedocs.io/en/latest/api/models.html#backbones]
to confirm if your backbone supports it.

Modify dataset

When fine-tuning on a new dataset, usually we need to modify some dataset
configs. Here, we need to modify the pipeline to resize the image from 32 to
224 to fit the input size of the model pre-trained on ImageNet, and some other
configs.

img_norm_cfg = dict(
 mean=[125.307, 122.961, 113.8575],
 std=[51.5865, 50.847, 51.255],
 to_rgb=False,
)
train_pipeline = [
 dict(type='RandomCrop', size=32, padding=4),
 dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
 dict(type='Resize', size=224),
 dict(type='Normalize', **img_norm_cfg),
 dict(type='ImageToTensor', keys=['img']),
 dict(type='ToTensor', keys=['gt_label']),
 dict(type='Collect', keys=['img', 'gt_label']),
]
test_pipeline = [
 dict(type='Resize', size=224),
 dict(type='Normalize', **img_norm_cfg),
 dict(type='ImageToTensor', keys=['img']),
 dict(type='Collect', keys=['img']),
]
data = dict(
 train=dict(pipeline=train_pipeline),
 val=dict(pipeline=test_pipeline),
 test=dict(pipeline=test_pipeline),
)

Modify training schedule

The fine-tuning hyper parameters vary from the default schedule. It usually
requires smaller learning rate and less training epochs.

lr is set for a batch size of 128
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
learning policy
lr_config = dict(policy='step', step=[15])
runner = dict(type='EpochBasedRunner', max_epochs=200)
log_config = dict(interval=100)

Start Training

Now, we have finished the fine-tuning config file as following:

base = [
 '../_base_/models/resnet50.py',
 '../_base_/datasets/cifar10_bs16.py', '../_base_/default_runtime.py'
]

Model config
model = dict(
 backbone=dict(
 frozen_stages=2,
 init_cfg=dict(
 type='Pretrained',
 checkpoint='https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb32_in1k_20210831-ea4938fc.pth',
 prefix='backbone',
)),
 head=dict(num_classes=10),
)

Dataset config
img_norm_cfg = dict(
 mean=[125.307, 122.961, 113.8575],
 std=[51.5865, 50.847, 51.255],
 to_rgb=False,
)
train_pipeline = [
 dict(type='RandomCrop', size=32, padding=4),
 dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
 dict(type='Resize', size=224),
 dict(type='Normalize', **img_norm_cfg),
 dict(type='ImageToTensor', keys=['img']),
 dict(type='ToTensor', keys=['gt_label']),
 dict(type='Collect', keys=['img', 'gt_label']),
]
test_pipeline = [
 dict(type='Resize', size=224),
 dict(type='Normalize', **img_norm_cfg),
 dict(type='ImageToTensor', keys=['img']),
 dict(type='Collect', keys=['img']),
]
data = dict(
 train=dict(pipeline=train_pipeline),
 val=dict(pipeline=test_pipeline),
 test=dict(pipeline=test_pipeline),
)

Training schedule config
lr is set for a batch size of 128
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
learning policy
lr_config = dict(policy='step', step=[15])
runner = dict(type='EpochBasedRunner', max_epochs=200)
log_config = dict(interval=100)

Here we use 8 GPUs on your computer to train the model with the following
command:

bash tools/dist_train.sh configs/tutorial/resnet50_finetune_cifar.py 8

Also, you can use only one GPU to train the model with the following command:

python tools/train.py configs/tutorial/resnet50_finetune_cifar.py

But wait, an important config need to be changed if using one GPU. We need to
change the dataset config as following:

data = dict(
 samples_per_gpu=128,
 train=dict(pipeline=train_pipeline),
 val=dict(pipeline=test_pipeline),
 test=dict(pipeline=test_pipeline),
)

It’s because our training schedule is for a batch size of 128. If using 8 GPUs,
just use samples_per_gpu=16 config in the base config file, and the total batch
size will be 128. But if using one GPU, you need to change it to 128 manually to
match the training schedule.

Tutorial 3: Customize Dataset

We support many common public datasets for image classification task, you can find them in
this page [https://mmclassification.readthedocs.io/en/latest/api/datasets.html].

In this section, we demonstrate how to use your own dataset
and use dataset wrapper.

Use your own dataset

Reorganize dataset to existing format

The simplest way to use your own dataset is to convert it to existing dataset formats.

For multi-class classification task, we recommend to use the format of
CustomDataset [https://mmclassification.readthedocs.io/en/latest/api/datasets.html#mmcls.datasets.CustomDataset].

The CustomDataset supports two kinds of format:

	An annotation file is provided, and each line indicates a sample image.

The sample images can be organized in any structure, like:

train/
├── folder_1
│ ├── xxx.png
│ ├── xxy.png
│ └── ...
├── 123.png
├── nsdf3.png
└── ...

And an annotation file records all paths of samples and corresponding
category index. The first column is the image path relative to the folder
(in this example, train) and the second column is the index of category:

folder_1/xxx.png 0
folder_1/xxy.png 1
123.png 1
nsdf3.png 2
...

Note

The value of the category indices should fall in range [0, num_classes - 1].

	The sample images are arranged in the special structure:

train/
├── cat
│ ├── xxx.png
│ ├── xxy.png
│ └── ...
│ └── xxz.png
├── bird
│ ├── bird1.png
│ ├── bird2.png
│ └── ...
└── dog
 ├── 123.png
 ├── nsdf3.png
 ├── ...
 └── asd932_.png

In this case, you don’t need provide annotation file, and all images in the directory cat will be
recognized as samples of cat.

Usually, we will split the whole dataset to three sub datasets: train, val
and test for training, validation and test. And every sub dataset should
be organized as one of the above structures.

For example, the whole dataset is as below (using the first structure):

mmclassification
└── data
 └── my_dataset
 ├── meta
 │ ├── train.txt
 │ ├── val.txt
 │ └── test.txt
 ├── train
 ├── val
 └── test

And in your config file, you can modify the data field as below:

...
dataset_type = 'CustomDataset'
classes = ['cat', 'bird', 'dog'] # The category names of your dataset

data = dict(
 train=dict(
 type=dataset_type,
 data_prefix='data/my_dataset/train',
 ann_file='data/my_dataset/meta/train.txt',
 classes=classes,
 pipeline=train_pipeline
),
 val=dict(
 type=dataset_type,
 data_prefix='data/my_dataset/val',
 ann_file='data/my_dataset/meta/val.txt',
 classes=classes,
 pipeline=test_pipeline
),
 test=dict(
 type=dataset_type,
 data_prefix='data/my_dataset/test',
 ann_file='data/my_dataset/meta/test.txt',
 classes=classes,
 pipeline=test_pipeline
)
)
...

Create a new dataset class

You can write a new dataset class inherited from BaseDataset, and overwrite load_annotations(self),
like CIFAR10 [https://github.com/open-mmlab/mmclassification/blob/master/mmcls/datasets/cifar.py] and
CustomDataset [https://github.com/open-mmlab/mmclassification/blob/master/mmcls/datasets/custom.py].

Typically, this function returns a list, where each sample is a dict, containing necessary data information,
e.g., img and gt_label.

Assume we are going to implement a Filelist dataset, which takes filelists for both training and testing.
The format of annotation list is as follows:

000001.jpg 0
000002.jpg 1

We can create a new dataset in mmcls/datasets/filelist.py to load the data.

import mmcv
import numpy as np

from .builder import DATASETS
from .base_dataset import BaseDataset

@DATASETS.register_module()
class Filelist(BaseDataset):

 def load_annotations(self):
 assert isinstance(self.ann_file, str)

 data_infos = []
 with open(self.ann_file) as f:
 samples = [x.strip().split(' ') for x in f.readlines()]
 for filename, gt_label in samples:
 info = {'img_prefix': self.data_prefix}
 info['img_info'] = {'filename': filename}
 info['gt_label'] = np.array(gt_label, dtype=np.int64)
 data_infos.append(info)
 return data_infos

And add this dataset class in mmcls/datasets/__init__.py

from .base_dataset import BaseDataset
...
from .filelist import Filelist

__all__ = [
 'BaseDataset', ... ,'Filelist'
]

Then in the config, to use Filelist you can modify the config as the following

train = dict(
 type='Filelist',
 ann_file='image_list.txt',
 pipeline=train_pipeline
)

Use dataset wrapper

The dataset wrapper is a kind of class to change the behavior of dataset class, such as repeat the dataset or
re-balance the samples of different categories.

Repeat dataset

We use RepeatDataset as wrapper to repeat the dataset. For example, suppose the original dataset is
Dataset_A, to repeat it, the config looks like the following

data = dict(
 train = dict(
 type='RepeatDataset',
 times=N,
 dataset=dict(# This is the original config of Dataset_A
 type='Dataset_A',
 ...
 pipeline=train_pipeline
)
)
 ...
)

Class balanced dataset

We use ClassBalancedDataset as wrapper to repeat the dataset based on category frequency. The dataset to
repeat needs to implement method get_cat_ids(idx) to support ClassBalancedDataset. For example, to repeat
Dataset_A with oversample_thr=1e-3, the config looks like the following

data = dict(
 train = dict(
 type='ClassBalancedDataset',
 oversample_thr=1e-3,
 dataset=dict(# This is the original config of Dataset_A
 type='Dataset_A',
 ...
 pipeline=train_pipeline
)
)
 ...
)

You may refer to API reference [https://mmclassification.readthedocs.io/en/latest/api/datasets.html#mmcls.datasets.ClassBalancedDataset] for details.

Tutorial 4: Custom Data Pipelines

Design of Data pipelines

Following typical conventions, we use Dataset and DataLoader for data loading
with multiple workers. Indexing Dataset returns a dict of data items corresponding to
the arguments of models forward method.

The data preparation pipeline and the dataset is decomposed. Usually a dataset
defines how to process the annotations and a data pipeline defines all the steps to prepare a data dict.
A pipeline consists of a sequence of operations. Each operation takes a dict as input and also output a dict for the next transform.

The operations are categorized into data loading, pre-processing and formatting.

Here is an pipeline example for ResNet-50 training on ImageNet.

img_norm_cfg = dict(
 mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
 dict(type='LoadImageFromFile'),
 dict(type='RandomResizedCrop', size=224),
 dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
 dict(type='Normalize', **img_norm_cfg),
 dict(type='ImageToTensor', keys=['img']),
 dict(type='ToTensor', keys=['gt_label']),
 dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
 dict(type='LoadImageFromFile'),
 dict(type='Resize', size=256),
 dict(type='CenterCrop', crop_size=224),
 dict(type='Normalize', **img_norm_cfg),
 dict(type='ImageToTensor', keys=['img']),
 dict(type='Collect', keys=['img'])
]

For each operation, we list the related dict fields that are added/updated/removed.
At the end of the pipeline, we use Collect to only retain the necessary items for forward computation.

Data loading

LoadImageFromFile

	add: img, img_shape, ori_shape

By default, LoadImageFromFile loads images from disk but it may lead to IO bottleneck for efficient small models.
Various backends are supported by mmcv to accelerate this process. For example, if the training machines have setup
memcached [https://memcached.org/], we can revise the config as follows.

memcached_root = '/mnt/xxx/memcached_client/'
train_pipeline = [
 dict(
 type='LoadImageFromFile',
 file_client_args=dict(
 backend='memcached',
 server_list_cfg=osp.join(memcached_root, 'server_list.conf'),
 client_cfg=osp.join(memcached_root, 'client.conf'))),
]

More supported backends can be found in mmcv.fileio.FileClient [https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py].

Pre-processing

Resize

	add: scale, scale_idx, pad_shape, scale_factor, keep_ratio

	update: img, img_shape

RandomFlip

	add: flip, flip_direction

	update: img

RandomCrop

	update: img, pad_shape

Normalize

	add: img_norm_cfg

	update: img

Formatting

ToTensor

	update: specified by keys.

ImageToTensor

	update: specified by keys.

Collect

	remove: all other keys except for those specified by keys

For more information about other data transformation classes, please refer to Data Transformations

Extend and use custom pipelines

	Write a new pipeline in any file, e.g., my_pipeline.py, and place it in
the folder mmcls/datasets/pipelines/. The pipeline class needs to override
the __call__ method which takes a dict as input and returns a dict.

from mmcls.datasets import PIPELINES

@PIPELINES.register_module()
class MyTransform(object):

 def __call__(self, results):
 # apply transforms on results['img']
 return results

	Import the new class in mmcls/datasets/pipelines/__init__.py.

...
from .my_pipeline import MyTransform

__all__ = [
 ..., 'MyTransform'
]

	Use it in config files.

img_norm_cfg = dict(
 mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
 dict(type='LoadImageFromFile'),
 dict(type='RandomResizedCrop', size=224),
 dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
 dict(type='MyTransform'),
 dict(type='Normalize', **img_norm_cfg),
 dict(type='ImageToTensor', keys=['img']),
 dict(type='ToTensor', keys=['gt_label']),
 dict(type='Collect', keys=['img', 'gt_label'])
]

Pipeline visualization

After designing data pipelines, you can use the visualization tools to view the performance.

Tutorial 5: Adding New Modules

Develop new components

We basically categorize model components into 3 types.

	backbone: usually an feature extraction network, e.g., ResNet, MobileNet.

	neck: the component between backbones and heads, e.g., GlobalAveragePooling.

	head: the component for specific tasks, e.g., classification or regression.

Add new backbones

Here we show how to develop new components with an example of ResNet_CIFAR.
As the input size of CIFAR is 32x32, this backbone replaces the kernel_size=7, stride=2 to kernel_size=3, stride=1 and remove the MaxPooling after stem, to avoid forwarding small feature maps to residual blocks.
It inherits from ResNet and only modifies the stem layers.

	Create a new file mmcls/models/backbones/resnet_cifar.py.

import torch.nn as nn

from ..builder import BACKBONES
from .resnet import ResNet

@BACKBONES.register_module()
class ResNet_CIFAR(ResNet):

 """ResNet backbone for CIFAR.

 short description of the backbone

 Args:
 depth(int): Network depth, from {18, 34, 50, 101, 152}.
 ...
 """

 def __init__(self, depth, deep_stem, **kwargs):
 # call ResNet init
 super(ResNet_CIFAR, self).__init__(depth, deep_stem=deep_stem, **kwargs)
 # other specific initialization
 assert not self.deep_stem, 'ResNet_CIFAR do not support deep_stem'

 def _make_stem_layer(self, in_channels, base_channels):
 # override ResNet method to modify the network structure
 self.conv1 = build_conv_layer(
 self.conv_cfg,
 in_channels,
 base_channels,
 kernel_size=3,
 stride=1,
 padding=1,
 bias=False)
 self.norm1_name, norm1 = build_norm_layer(
 self.norm_cfg, base_channels, postfix=1)
 self.add_module(self.norm1_name, norm1)
 self.relu = nn.ReLU(inplace=True)

 def forward(self, x): # should return a tuple
 pass # implementation is ignored

 def init_weights(self, pretrained=None):
 pass # override ResNet init_weights if necessary

 def train(self, mode=True):
 pass # override ResNet train if necessary

	Import the module in mmcls/models/backbones/__init__.py.

...
from .resnet_cifar import ResNet_CIFAR

__all__ = [
 ..., 'ResNet_CIFAR'
]

	Use it in your config file.

model = dict(
 ...
 backbone=dict(
 type='ResNet_CIFAR',
 depth=18,
 other_arg=xxx),
 ...

Add new necks

Here we take GlobalAveragePooling as an example. It is a very simple neck without any arguments.
To add a new neck, we mainly implement the forward function, which applies some operation on the output from backbone and forward the results to head.

	Create a new file in mmcls/models/necks/gap.py.

import torch.nn as nn

from ..builder import NECKS

@NECKS.register_module()
class GlobalAveragePooling(nn.Module):

 def __init__(self):
 self.gap = nn.AdaptiveAvgPool2d((1, 1))

 def forward(self, inputs):
 # we regard inputs as tensor for simplicity
 outs = self.gap(inputs)
 outs = outs.view(inputs.size(0), -1)
 return outs

	Import the module in mmcls/models/necks/__init__.py.

...
from .gap import GlobalAveragePooling

__all__ = [
 ..., 'GlobalAveragePooling'
]

	Modify the config file.

model = dict(
 neck=dict(type='GlobalAveragePooling'),
)

Add new heads

Here we show how to develop a new head with the example of LinearClsHead as the following.
To implement a new head, basically we need to implement forward_train, which takes the feature maps from necks or backbones as input and compute loss based on ground-truth labels.

	Create a new file in mmcls/models/heads/linear_head.py.

from ..builder import HEADS
from .cls_head import ClsHead

@HEADS.register_module()
class LinearClsHead(ClsHead):

 def __init__(self,
 num_classes,
 in_channels,
 loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
 topk=(1,)):
 super(LinearClsHead, self).__init__(loss=loss, topk=topk)
 self.in_channels = in_channels
 self.num_classes = num_classes

 if self.num_classes <= 0:
 raise ValueError(
 f'num_classes={num_classes} must be a positive integer')

 self._init_layers()

 def _init_layers(self):
 self.fc = nn.Linear(self.in_channels, self.num_classes)

 def init_weights(self):
 normal_init(self.fc, mean=0, std=0.01, bias=0)

 def forward_train(self, x, gt_label):
 cls_score = self.fc(x)
 losses = self.loss(cls_score, gt_label)
 return losses

	Import the module in mmcls/models/heads/__init__.py.

...
from .linear_head import LinearClsHead

__all__ = [
 ..., 'LinearClsHead'
]

	Modify the config file.

Together with the added GlobalAveragePooling neck, an entire config for a model is as follows.

model = dict(
 type='ImageClassifier',
 backbone=dict(
 type='ResNet',
 depth=50,
 num_stages=4,
 out_indices=(3,),
 style='pytorch'),
 neck=dict(type='GlobalAveragePooling'),
 head=dict(
 type='LinearClsHead',
 num_classes=1000,
 in_channels=2048,
 loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
 topk=(1, 5),
))

Add new loss

To add a new loss function, we mainly implement the forward function in the loss module.
In addition, it is helpful to leverage the decorator weighted_loss to weight the loss for each element.
Assuming that we want to mimic a probabilistic distribution generated from another classification model, we implement a L1Loss to fulfil the purpose as below.

	Create a new file in mmcls/models/losses/l1_loss.py.

import torch
import torch.nn as nn

from ..builder import LOSSES
from .utils import weighted_loss

@weighted_loss
def l1_loss(pred, target):
 assert pred.size() == target.size() and target.numel() > 0
 loss = torch.abs(pred - target)
 return loss

@LOSSES.register_module()
class L1Loss(nn.Module):

 def __init__(self, reduction='mean', loss_weight=1.0):
 super(L1Loss, self).__init__()
 self.reduction = reduction
 self.loss_weight = loss_weight

 def forward(self,
 pred,
 target,
 weight=None,
 avg_factor=None,
 reduction_override=None):
 assert reduction_override in (None, 'none', 'mean', 'sum')
 reduction = (
 reduction_override if reduction_override else self.reduction)
 loss = self.loss_weight * l1_loss(
 pred, target, weight, reduction=reduction, avg_factor=avg_factor)
 return loss

	Import the module in mmcls/models/losses/__init__.py.

...
from .l1_loss import L1Loss, l1_loss

__all__ = [
 ..., 'L1Loss', 'l1_loss'
]

	Modify loss field in the config.

loss=dict(type='L1Loss', loss_weight=1.0))

Tutorial 6: Customize Schedule

In this tutorial, we will introduce some methods about how to construct optimizers, customize learning rate and momentum schedules, parameter-wise finely configuration, gradient clipping, gradient accumulation, and customize self-implemented methods for the project.

	Customize optimizer supported by PyTorch

	Customize learning rate schedules

	Learning rate decay

	Warmup strategy

	Customize momentum schedules

	Parameter-wise finely configuration

	Gradient clipping and gradient accumulation

	Gradient clipping

	Gradient accumulation

	Customize self-implemented methods

	Customize self-implemented optimizer

	Customize optimizer constructor

Customize optimizer supported by PyTorch

We already support to use all the optimizers implemented by PyTorch, and to use and modify them, please change the optimizer field of config files.

For example, if you want to use SGD, the modification could be as the following.

optimizer = dict(type='SGD', lr=0.0003, weight_decay=0.0001)

To modify the learning rate of the model, just modify the lr in the config of optimizer.
You can also directly set other arguments according to the API doc [https://pytorch.org/docs/stable/optim.html?highlight=optim#module-torch.optim] of PyTorch.

For example, if you want to use Adam with the setting like torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False) in PyTorch,
the config should looks like.

optimizer = dict(type='Adam', lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)

Customize learning rate schedules

Learning rate decay

Learning rate decay is widely used to improve performance. And to use learning rate decay, please set the lr_confg field in config files.

For example, we use step policy as the default learning rate decay policy of ResNet, and the config is:

lr_config = dict(policy='step', step=[100, 150])

Then during training, the program will call StepLRHook [https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/lr_updater.py#L153] periodically to update the learning rate.

We also support many other learning rate schedules here [https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py], such as CosineAnnealing and Poly schedule. Here are some examples

	ConsineAnnealing schedule:

lr_config = dict(
 policy='CosineAnnealing',
 warmup='linear',
 warmup_iters=1000,
 warmup_ratio=1.0 / 10,
 min_lr_ratio=1e-5)

	Poly schedule:

lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)

Warmup strategy

In the early stage, training is easy to be volatile, and warmup is a technique
to reduce volatility. With warmup, the learning rate will increase gradually
from a minor value to the expected value.

In MMClassification, we use lr_config to configure the warmup strategy, the main parameters are as follows：

	warmup: The warmup curve type. Please choose one from ‘constant’, ‘linear’, ‘exp’ and None, and None means disable warmup.

	warmup_by_epoch : if warmup by epoch or not, default to be True, if set to be False, warmup by iter.

	warmup_iters : the number of warm-up iterations, when warmup_by_epoch=True, the unit is epoch; when warmup_by_epoch=False, the unit is the number of iterations (iter).

	warmup_ratio : warm-up initial learning rate will calculate as lr = lr * warmup_ratio。

Here are some examples

	linear & warmup by iter

lr_config = dict(
 policy='CosineAnnealing',
 by_epoch=False,
 min_lr_ratio=1e-2,
 warmup='linear',
 warmup_ratio=1e-3,
 warmup_iters=20 * 1252,
 warmup_by_epoch=False)

	exp & warmup by epoch

lr_config = dict(
 policy='CosineAnnealing',
 min_lr=0,
 warmup='exp',
 warmup_iters=5,
 warmup_ratio=0.1,
 warmup_by_epoch=True)

Tip

After completing your configuration file，you could use learning rate visualization tool [https://mmclassification.readthedocs.io/en/latest/tools/visualization.html#learning-rate-schedule-visualization] to draw the corresponding learning rate adjustment curve.

Customize momentum schedules

We support the momentum scheduler to modify the model’s momentum according to learning rate, which could make the model converge in a faster way.

Momentum scheduler is usually used with LR scheduler, for example, the following config is used to accelerate convergence.
For more details, please refer to the implementation of CyclicLrUpdater [https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/lr_updater.py#L327]
and CyclicMomentumUpdater [https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/momentum_updater.py#L130].

Here is an example

lr_config = dict(
 policy='cyclic',
 target_ratio=(10, 1e-4),
 cyclic_times=1,
 step_ratio_up=0.4,
)
momentum_config = dict(
 policy='cyclic',
 target_ratio=(0.85 / 0.95, 1),
 cyclic_times=1,
 step_ratio_up=0.4,
)

Parameter-wise finely configuration

Some models may have some parameter-specific settings for optimization, for example, no weight decay to the BatchNorm layer or using different learning rates for different network layers.
To finely configuration them, we can use the paramwise_cfg option in optimizer.

We provide some examples here and more usages refer to DefaultOptimizerConstructor [https://mmcv.readthedocs.io/en/latest/_modules/mmcv/runner/optimizer/default_constructor.html#DefaultOptimizerConstructor].

	Using specified options

The DefaultOptimizerConstructor provides options including bias_lr_mult, bias_decay_mult, norm_decay_mult, dwconv_decay_mult, dcn_offset_lr_mult and bypass_duplicate to configure special optimizer behaviors of bias, normalization, depth-wise convolution, deformable convolution and duplicated parameter. E.g:

	No weight decay to the BatchNorm layer

optimizer = dict(
 type='SGD',
 lr=0.8,
 weight_decay=1e-4,
 paramwise_cfg=dict(norm_decay_mult=0.))

	Using custom_keys dict

MMClassification can use custom_keys to specify different parameters to use different learning rates or weight decays, for example:

	No weight decay for specific parameters

paramwise_cfg = dict(
 custom_keys={
 'backbone.cls_token': dict(decay_mult=0.0),
 'backbone.pos_embed': dict(decay_mult=0.0)
 })

optimizer = dict(
 type='SGD',
 lr=0.8,
 weight_decay=1e-4,
 paramwise_cfg=paramwise_cfg)

	Using a smaller learning rate and a weight decay for the backbone layers

optimizer = dict(
 type='SGD',
 lr=0.8,
 weight_decay=1e-4,
 # 'lr' for backbone and 'weight_decay' are 0.1 * lr and 0.9 * weight_decay
 paramwise_cfg=dict(
 custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=0.9)}))

Gradient clipping and gradient accumulation

Besides the basic function of PyTorch optimizers, we also provide some enhancement functions, such as gradient clipping, gradient accumulation, etc., refer to MMCV [https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/optimizer.py].

Gradient clipping

During the training process, the loss function may get close to a cliffy region and cause gradient explosion. And gradient clipping is helpful to stabilize the training process. More introduction can be found in this page [https://paperswithcode.com/method/gradient-clipping].

Currently we support grad_clip option in optimizer_config, and the arguments refer to PyTorch Documentation [https://pytorch.org/docs/stable/generated/torch.nn.utils.clip_grad_norm_.html].

Here is an example:

optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
norm_type: type of the used p-norm, here norm_type is 2.

When inheriting from base and modifying configs, if grad_clip=None in base, _delete_=True is needed. For more details about _delete_ you can refer to TUTORIAL 1: LEARN ABOUT CONFIGS [https://mmclassification.readthedocs.io/en/latest/tutorials/config.html#ignore-some-fields-in-the-base-configs]. For example,

base = [./_base_/schedules/imagenet_bs256_coslr.py]

optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2), _delete_=True, type='OptimizerHook')
you can ignore type if type is 'OptimizerHook', otherwise you must add "type='xxxxxOptimizerHook'" here

Gradient accumulation

When computing resources are lacking, the batch size can only be set to a small value, which may affect the performance of models. Gradient accumulation can be used to solve this problem.

Here is an example:

data = dict(samples_per_gpu=64)
optimizer_config = dict(type="GradientCumulativeOptimizerHook", cumulative_iters=4)

Indicates that during training, back-propagation is performed every 4 iters. And the above is equivalent to:

data = dict(samples_per_gpu=256)
optimizer_config = dict(type="OptimizerHook")

Note

When the optimizer hook type is not specified in optimizer_config, OptimizerHook is used by default.

Customize self-implemented methods

In academic research and industrial practice, it may be necessary to use optimization methods not implemented by MMClassification, and you can add them through the following methods.

Note

This part will modify the MMClassification source code or add code to the MMClassification framework, beginners can skip it.

Customize self-implemented optimizer

1. Define a new optimizer

A customized optimizer could be defined as below.

Assume you want to add an optimizer named MyOptimizer, which has arguments a, b, and c.
You need to create a new directory named mmcls/core/optimizer.
And then implement the new optimizer in a file, e.g., in mmcls/core/optimizer/my_optimizer.py:

from mmcv.runner import OPTIMIZERS
from torch.optim import Optimizer

@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):

 def __init__(self, a, b, c):

2. Add the optimizer to registry

To find the above module defined above, this module should be imported into the main namespace at first. There are two ways to achieve it.

	Modify mmcls/core/optimizer/__init__.py to import it into optimizer package, and then modify mmcls/core/__init__.py to import the new optimizer package.

Create the mmcls/core/optimizer folder and the mmcls/core/optimizer/__init__.py file if they don’t exist. The newly defined module should be imported in mmcls/core/optimizer/__init__.py and mmcls/core/__init__.py so that the registry will find the new module and add it:

In mmcls/core/optimizer/__init__.py
from .my_optimizer import MyOptimizer # MyOptimizer maybe other class name

__all__ = ['MyOptimizer']

In mmcls/core/__init__.py
...
from .optimizer import * # noqa: F401, F403

	Use custom_imports in the config to manually import it

custom_imports = dict(imports=['mmcls.core.optimizer.my_optimizer'], allow_failed_imports=False)

The module mmcls.core.optimizer.my_optimizer will be imported at the beginning of the program and the class MyOptimizer is then automatically registered.
Note that only the package containing the class MyOptimizer should be imported. mmcls.core.optimizer.my_optimizer.MyOptimizer cannot be imported directly.

3. Specify the optimizer in the config file

Then you can use MyOptimizer in optimizer field of config files.
In the configs, the optimizers are defined by the field optimizer like the following:

optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)

To use your own optimizer, the field can be changed to

optimizer = dict(type='MyOptimizer', a=a_value, b=b_value, c=c_value)

Customize optimizer constructor

Some models may have some parameter-specific settings for optimization, e.g. weight decay for BatchNorm layers.

Although our DefaultOptimizerConstructor is powerful, it may still not cover your need. If that, you can do those fine-grained parameter tuning through customizing optimizer constructor.

from mmcv.runner.optimizer import OPTIMIZER_BUILDERS

@OPTIMIZER_BUILDERS.register_module()
class MyOptimizerConstructor:

 def __init__(self, optimizer_cfg, paramwise_cfg=None):
 pass

 def __call__(self, model):
 ... # Construct your optimzier here.
 return my_optimizer

The default optimizer constructor is implemented here [https://github.com/open-mmlab/mmcv/blob/9ecd6b0d5ff9d2172c49a182eaa669e9f27bb8e7/mmcv/runner/optimizer/default_constructor.py#L11], which could also serve as a template for new optimizer constructor.

Tutorial 7: Customize Runtime Settings

In this tutorial, we will introduce some methods about how to customize workflow and hooks when running your own settings for the project.

	Customize Workflow

	Hooks

	Default training hooks

	Use other implemented hooks

	Customize self-implemented hooks

	FAQ

Customize Workflow

Workflow is a list of (phase, duration) to specify the running order and duration. The meaning of “duration” depends on the runner’s type.

For example, we use epoch-based runner by default, and the “duration” means how many epochs the phase to be executed in a cycle. Usually,
we only want to execute training phase, just use the following config.

workflow = [('train', 1)]

Sometimes we may want to check some metrics (e.g. loss, accuracy) about the model on the validate set.
In such case, we can set the workflow as

[('train', 1), ('val', 1)]

so that 1 epoch for training and 1 epoch for validation will be run iteratively.

By default, we recommend using EvalHook to do evaluation after the training epoch, but you can still use val workflow as an alternative.

Note

	The parameters of model will not be updated during the val epoch.

	Keyword max_epochs in the config only controls the number of training epochs and will not affect the validation workflow.

	Workflows [('train', 1), ('val', 1)] and [('train', 1)] will not change the behavior of EvalHook because EvalHook is called by after_train_epoch and validation workflow only affect hooks that are called through after_val_epoch.
Therefore, the only difference between [('train', 1), ('val', 1)] and [('train', 1)] is that the runner will calculate losses on the validation set after each training epoch.

Hooks

The hook mechanism is widely used in the OpenMMLab open-source algorithm library. Combined with the Runner, the entire life cycle of the training process can be managed easily. You can learn more about the hook through related article [https://www.calltutors.com/blog/what-is-hook/].

Hooks only work after being registered into the runner. At present, hooks are mainly divided into two categories:

	default training hooks

The default training hooks are registered by the runner by default. Generally, they are hooks for some basic functions, and have a certain priority, you don’t need to modify the priority.

	custom hooks

The custom hooks are registered through custom_hooks. Generally, they are hooks with enhanced functions. The priority needs to be specified in the configuration file. If you do not specify the priority of the hook, it will be set to ‘NORMAL’ by default.

Priority list

	Level

	Value

	HIGHEST

	0

	VERY_HIGH

	10

	HIGH

	30

	ABOVE_NORMAL

	40

	NORMAL(default)

	50

	BELOW_NORMAL

	60

	LOW

	70

	VERY_LOW

	90

	LOWEST

	100

The priority determines the execution order of the hooks. Before training, the log will print out the execution order of the hooks at each stage to facilitate debugging.

default training hooks

Some common hooks are not registered through custom_hooks, they are

	Hooks

	Priority

	LrUpdaterHook

	VERY_HIGH (10)

	MomentumUpdaterHook

	HIGH (30)

	OptimizerHook

	ABOVE_NORMAL (40)

	CheckpointHook

	NORMAL (50)

	IterTimerHook

	LOW (70)

	EvalHook

	LOW (70)

	LoggerHook(s)

	VERY_LOW (90)

OptimizerHook, MomentumUpdaterHook and LrUpdaterHook have been introduced in sehedule strategy.
IterTimerHook is used to record elapsed time and does not support modification.

Here we reveal how to customize CheckpointHook, LoggerHooks, and EvalHook.

CheckpointHook

The MMCV runner will use checkpoint_config to initialize CheckpointHook [https://github.com/open-mmlab/mmcv/blob/9ecd6b0d5ff9d2172c49a182eaa669e9f27bb8e7/mmcv/runner/hooks/checkpoint.py].

checkpoint_config = dict(interval=1)

We could set max_keep_ckpts to save only a small number of checkpoints or decide whether to store state dict of optimizer by save_optimizer.
More details of the arguments are here [https://mmcv.readthedocs.io/en/latest/api.html#mmcv.runner.CheckpointHook]

LoggerHooks

The log_config wraps multiple logger hooks and enables to set intervals. Now MMCV supports TextLoggerHook, WandbLoggerHook, MlflowLoggerHook, NeptuneLoggerHook, DvcliveLoggerHook and TensorboardLoggerHook.
The detailed usages can be found in the doc [https://mmcv.readthedocs.io/en/latest/api.html#mmcv.runner.LoggerHook].

log_config = dict(
 interval=50,
 hooks=[
 dict(type='TextLoggerHook'),
 dict(type='TensorboardLoggerHook')
])

EvalHook

The config of evaluation will be used to initialize the EvalHook [https://github.com/open-mmlab/mmclassification/blob/master/mmcls/core/evaluation/eval_hooks.py].

The EvalHook has some reserved keys, such as interval, save_best and start, and the other arguments such as metrics will be passed to the dataset.evaluate()

evaluation = dict(interval=1, metric='accuracy', metric_options={'topk': (1,)})

You can save the model weight when the best verification result is obtained by modifying the parameter save_best:

"auto" means automatically select the metrics to compare.
You can also use a specific key like "accuracy_top-1".
evaluation = dict(interval=1, save_best="auto", metric='accuracy', metric_options={'topk': (1,)})

When running some large experiments, you can skip the validation step at the beginning of training by modifying the parameter start as below:

evaluation = dict(interval=1, start=200, metric='accuracy', metric_options={'topk': (1,)})

This indicates that, before the 200th epoch, evaluations would not be executed. Since the 200th epoch, evaluations would be executed after the training process.

Note

In the default configuration files of MMClassification, the evaluation field is generally placed in the datasets configs.

Use other implemented hooks

Some hooks have been already implemented in MMCV and MMClassification, they are:

	EMAHook [https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/ema.py]

	SyncBuffersHook [https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/sync_buffer.py]

	EmptyCacheHook [https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/memory.py]

	ProfilerHook [https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/profiler.py]

	……

If the hook is already implemented in MMCV, you can directly modify the config to use the hook as below

mmcv_hooks = [
 dict(type='MMCVHook', a=a_value, b=b_value, priority='NORMAL')
]

such as using EMAHook, interval is 100 iters:

custom_hooks = [
 dict(type='EMAHook', interval=100, priority='HIGH')
]

Customize self-implemented hooks

1. Implement a new hook

Here we give an example of creating a new hook in MMClassification and using it in training.

from mmcv.runner import HOOKS, Hook

@HOOKS.register_module()
class MyHook(Hook):

 def __init__(self, a, b):
 pass

 def before_run(self, runner):
 pass

 def after_run(self, runner):
 pass

 def before_epoch(self, runner):
 pass

 def after_epoch(self, runner):
 pass

 def before_iter(self, runner):
 pass

 def after_iter(self, runner):
 pass

Depending on the functionality of the hook, the users need to specify what the hook will do at each stage of the training in before_run, after_run, before_epoch, after_epoch, before_iter, and after_iter.

2. Register the new hook

Then we need to make MyHook imported. Assuming the file is in mmcls/core/utils/my_hook.py there are two ways to do that:

	Modify mmcls/core/utils/__init__.py to import it.

The newly defined module should be imported in mmcls/core/utils/__init__.py so that the registry will
find the new module and add it:

from .my_hook import MyHook

	Use custom_imports in the config to manually import it

custom_imports = dict(imports=['mmcls.core.utils.my_hook'], allow_failed_imports=False)

3. Modify the config

custom_hooks = [
 dict(type='MyHook', a=a_value, b=b_value)
]

You can also set the priority of the hook as below:

custom_hooks = [
 dict(type='MyHook', a=a_value, b=b_value, priority='ABOVE_NORMAL')
]

By default, the hook’s priority is set as NORMAL during registration.

FAQ

1. resume_from and load_from and init_cfg.Pretrained

	load_from : only imports model weights, which is mainly used to load pre-trained or trained models;

	resume_from : not only import model weights, but also optimizer information, current epoch information, mainly used to continue training from the checkpoint.

	init_cfg.Pretrained : Load weights during weight initialization, and you can specify which module to load. This is usually used when fine-tuning a model, refer to Tutorial 2: Fine-tune Models.

Model Zoo Summary

	Number of papers: 34

	ALGORITHM: 34

	Number of checkpoints: 224

	[ALGORITHM] Conformer: Local Features Coupling Global Representations for Visual Recognition (4 ckpts)

	[ALGORITHM] Patches Are All You Need? (3 ckpts)

	[ALGORITHM] A ConvNet for the 2020s (13 ckpts)

	[ALGORITHM] CSPNet: A New Backbone that can Enhance Learning Capability of CNN (3 ckpts)

	[ALGORITHM] Residual Attention: A Simple but Effective Method for Multi-Label Recognition (1 ckpts)

	[ALGORITHM] Training data-efficient image transformers & distillation through attention (9 ckpts)

	[ALGORITHM] Densely Connected Convolutional Networks (4 ckpts)

	[ALGORITHM] EfficientFormer: Vision Transformers at MobileNet Speed (3 ckpts)

	[ALGORITHM] Rethinking Model Scaling for Convolutional Neural Networks (23 ckpts)

	[ALGORITHM] HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions (9 ckpts)

	[ALGORITHM] Deep High-Resolution Representation Learning for Visual Recognition (9 ckpts)

	[ALGORITHM] MLP-Mixer: An all-MLP Architecture for Vision (2 ckpts)

	[ALGORITHM] MobileNetV2: Inverted Residuals and Linear Bottlenecks (1 ckpts)

	[ALGORITHM] Searching for MobileNetV3 (2 ckpts)

	[ALGORITHM] MViTv2: Improved Multiscale Vision Transformers for Classification and Detection (4 ckpts)

	[ALGORITHM] MetaFormer is Actually What You Need for Vision (5 ckpts)

	[ALGORITHM] Designing Network Design Spaces (16 ckpts)

	[ALGORITHM] RepMLP: Re-parameterizing Convolutions into Fully-connected Layers forImage Recognition (2 ckpts)

	[ALGORITHM] Repvgg: Making vgg-style convnets great again (12 ckpts)

	[ALGORITHM] Res2Net: A New Multi-scale Backbone Architecture (3 ckpts)

	[ALGORITHM] Deep Residual Learning for Image Recognition (26 ckpts)

	[ALGORITHM] Aggregated Residual Transformations for Deep Neural Networks (4 ckpts)

	[ALGORITHM] Squeeze-and-Excitation Networks (2 ckpts)

	[ALGORITHM] ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices (1 ckpts)

	[ALGORITHM] Shufflenet v2: Practical guidelines for efficient cnn architecture design (1 ckpts)

	[ALGORITHM] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (14 ckpts)

	[ALGORITHM] Swin Transformer V2: Scaling Up Capacity and Resolution (12 ckpts)

	[ALGORITHM] Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet (3 ckpts)

	[ALGORITHM] Transformer in Transformer (1 ckpts)

	[ALGORITHM] Twins: Revisiting the Design of Spatial Attention in Vision Transformers (6 ckpts)

	[ALGORITHM] Visual Attention Network (8 ckpts)

	[ALGORITHM] Very Deep Convolutional Networks for Large-Scale Image Recognition (8 ckpts)

	[ALGORITHM] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (7 ckpts)

	[ALGORITHM] Wide Residual Networks (3 ckpts)

Model Zoo

ImageNet

ImageNet has multiple versions, but the most commonly used one is ILSVRC 2012 [http://www.image-net.org/challenges/LSVRC/2012/].
The ResNet family models below are trained by standard data augmentations, i.e., RandomResizedCrop, RandomHorizontalFlip and Normalize.

	Model

	Params(M)

	Flops(G)

	Top-1 (%)

	Top-5 (%)

	Config

	Download

	VGG-11

	132.86

	7.63

	68.75

	88.87

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg11_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_batch256_imagenet_20210208-4271cd6c.pth] | log [https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_batch256_imagenet_20210208-4271cd6c.log.json]

	VGG-13

	133.05

	11.34

	70.02

	89.46

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg13_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_batch256_imagenet_20210208-4d1d6080.pth] | log [https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_batch256_imagenet_20210208-4d1d6080.log.json]

	VGG-16

	138.36

	15.5

	71.62

	90.49

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg16_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_batch256_imagenet_20210208-db26f1a5.pth] | log [https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_batch256_imagenet_20210208-db26f1a5.log.json]

	VGG-19

	143.67

	19.67

	72.41

	90.80

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg19_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_batch256_imagenet_20210208-e6920e4a.pth] | log [https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_batch256_imagenet_20210208-e6920e4a.log.json]

	VGG-11-BN

	132.87

	7.64

	70.75

	90.12

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg11bn_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_bn_batch256_imagenet_20210207-f244902c.pth] | log [https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_bn_batch256_imagenet_20210207-f244902c.log.json]

	VGG-13-BN

	133.05

	11.36

	72.15

	90.71

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg13bn_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_bn_batch256_imagenet_20210207-1a8b7864.pth] | log [https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_bn_batch256_imagenet_20210207-1a8b7864.log.json]

	VGG-16-BN

	138.37

	15.53

	73.72

	91.68

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg16_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_bn_batch256_imagenet_20210208-7e55cd29.pth] | log [https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_bn_batch256_imagenet_20210208-7e55cd29.log.json]

	VGG-19-BN

	143.68

	19.7

	74.70

	92.24

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg19bn_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_bn_batch256_imagenet_20210208-da620c4f.pth] | log [https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_bn_batch256_imagenet_20210208-da620c4f.log.json]

	RepVGG-A0*

	9.11（train) | 8.31 (deploy)

	1.52 (train) | 1.36 (deploy)

	72.41

	90.50

	config (train) [https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-A0_4xb64-coslr-120e_in1k.py] | config (deploy) [https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-A0_deploy_4xb64-coslr-120e_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A0_3rdparty_4xb64-coslr-120e_in1k_20210909-883ab98c.pth]

	RepVGG-A1*

	14.09 (train) | 12.79 (deploy)

	2.64 (train) | 2.37 (deploy)

	74.47

	91.85

	config (train) [https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-A1_4xb64-coslr-120e_in1k.py] | config (deploy) [https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-A1_deploy_4xb64-coslr-120e_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A1_3rdparty_4xb64-coslr-120e_in1k_20210909-24003a24.pth]

	RepVGG-A2*

	28.21 (train) | 25.5 (deploy)

	5.7 (train) | 5.12 (deploy)

	76.48

	93.01

	config (train) [https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-A2_4xb64-coslr-120e_in1k.py] | config (deploy) [https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-A2_deploy_4xb64-coslr-120e_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A2_3rdparty_4xb64-coslr-120e_in1k_20210909-97d7695a.pth]

	RepVGG-B0*

	15.82 (train) | 14.34 (deploy)

	3.42 (train) | 3.06 (deploy)

	75.14

	92.42

	config (train) [https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B0_4xb64-coslr-120e_in1k.py] | config (deploy) [https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B0_deploy_4xb64-coslr-120e_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B0_3rdparty_4xb64-coslr-120e_in1k_20210909-446375f4.pth]

	RepVGG-B1*

	57.42 (train) | 51.83 (deploy)

	13.16 (train) | 11.82 (deploy)

	78.37

	94.11

	config (train) [https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B1_4xb64-coslr-120e_in1k.py] | config (deploy) [https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B1_deploy_4xb64-coslr-120e_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1_3rdparty_4xb64-coslr-120e_in1k_20210909-750cdf67.pth]

	RepVGG-B1g2*

	45.78 (train) | 41.36 (deploy)

	9.82 (train) | 8.82 (deploy)

	77.79

	93.88

	config (train) [https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B1g2_4xb64-coslr-120e_in1k.py] | config (deploy) [https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B1g2_deploy_4xb64-coslr-120e_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1g2_3rdparty_4xb64-coslr-120e_in1k_20210909-344f6422.pth]

	RepVGG-B1g4*

	39.97 (train) | 36.13 (deploy)

	8.15 (train) | 7.32 (deploy)

	77.58

	93.84

	config (train) [https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B1g4_4xb64-coslr-120e_in1k.py] | config (deploy) [https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B1g4_deploy_4xb64-coslr-120e_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1g4_3rdparty_4xb64-coslr-120e_in1k_20210909-d4c1a642.pth]

	RepVGG-B2*

	89.02 (train) | 80.32 (deploy)

	20.46 (train) | 18.39 (deploy)

	78.78

	94.42

	config (train) [https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B2_4xb64-coslr-120e_in1k.py] | config (deploy) [https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B2_deploy_4xb64-coslr-120e_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B2_3rdparty_4xb64-coslr-120e_in1k_20210909-bd6b937c.pth]

	RepVGG-B2g4*

	61.76 (train) | 55.78 (deploy)

	12.63 (train) | 11.34 (deploy)

	79.38

	94.68

	config (train) [https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B2g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py] | config (deploy) [https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B2g4_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B2g4_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-7b7955f0.pth]

	RepVGG-B3*

	123.09 (train) | 110.96 (deploy)

	29.17 (train) | 26.22 (deploy)

	80.52

	95.26

	config (train) [https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B3_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py] | config (deploy) [https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B3_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B3_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-dda968bf.pth]

	RepVGG-B3g4*

	83.83 (train) | 75.63 (deploy)

	17.9 (train) | 16.08 (deploy)

	80.22

	95.10

	config (train) [https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B3g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py] | config (deploy) [https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B3g4_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B3g4_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-4e54846a.pth]

	RepVGG-D2se*

	133.33 (train) | 120.39 (deploy)

	36.56 (train) | 32.85 (deploy)

	81.81

	95.94

	config (train) [https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-D2se_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py] | config (deploy) [https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-D2se_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-D2se_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-cf3139b7.pth]

	ResNet-18

	11.69

	1.82

	70.07

	89.44

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet18_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_batch256_imagenet_20200708-34ab8f90.pth] | log [https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_batch256_imagenet_20200708-34ab8f90.log.json]

	ResNet-34

	21.8

	3.68

	73.85

	91.53

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet34_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_batch256_imagenet_20200708-32ffb4f7.pth] | log [https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_batch256_imagenet_20200708-32ffb4f7.log.json]

	ResNet-50 (rsb-a1)

	25.56

	4.12

	80.12

	94.78

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb256-rsb-a1-600e_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a1-600e_in1k_20211228-20e21305.pth] | log [https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a1-600e_in1k_20211228-20e21305.log.json]

	ResNet-101

	44.55

	7.85

	78.18

	94.03

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet101_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_batch256_imagenet_20200708-753f3608.pth] | log [https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_batch256_imagenet_20200708-753f3608.log.json]

	ResNet-152

	60.19

	11.58

	78.63

	94.16

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet152_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_batch256_imagenet_20200708-ec25b1f9.pth] | log [https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_batch256_imagenet_20200708-ec25b1f9.log.json]

	Res2Net-50-14w-8s*

	25.06

	4.22

	78.14

	93.85

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/res2net/res2net50-w14-s8_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/res2net/res2net50-w14-s8_3rdparty_8xb32_in1k_20210927-bc967bf1.pth]

	Res2Net-50-26w-8s*

	48.40

	8.39

	79.20

	94.36

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/res2net/res2net50-w26-s8_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/res2net/res2net50-w26-s8_3rdparty_8xb32_in1k_20210927-f547a94b.pth]

	Res2Net-101-26w-4s*

	45.21

	8.12

	79.19

	94.44

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/res2net/res2net101-w26-s4_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/res2net/res2net101-w26-s4_3rdparty_8xb32_in1k_20210927-870b6c36.pth]

	ResNeSt-50*

	27.48

	5.41

	81.13

	95.59

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/resnest/resnest50_32xb64_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/resnest/resnest50_imagenet_converted-1ebf0afe.pth]

	ResNeSt-101*

	48.28

	10.27

	82.32

	96.24

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/resnest/resnest101_32xb64_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/resnest/resnest101_imagenet_converted-032caa52.pth]

	ResNeSt-200*

	70.2

	17.53

	82.41

	96.22

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/resnest/resnest200_64xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/resnest/resnest200_imagenet_converted-581a60f2.pth]

	ResNeSt-269*

	110.93

	22.58

	82.70

	96.28

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/resnest/resnest269_64xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/resnest/resnest269_imagenet_converted-59930960.pth]

	ResNetV1D-50

	25.58

	4.36

	77.54

	93.57

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnetv1d50_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d50_b32x8_imagenet_20210531-db14775a.pth] | log [https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d50_b32x8_imagenet_20210531-db14775a.log.json]

	ResNetV1D-101

	44.57

	8.09

	78.93

	94.48

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnetv1d101_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d101_b32x8_imagenet_20210531-6e13bcd3.pth] | log [https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d101_b32x8_imagenet_20210531-6e13bcd3.log.json]

	ResNetV1D-152

	60.21

	11.82

	79.41

	94.7

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnetv1d152_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d152_b32x8_imagenet_20210531-278cf22a.pth] | log [https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d152_b32x8_imagenet_20210531-278cf22a.log.json]

	ResNeXt-32x4d-50

	25.03

	4.27

	77.90

	93.66

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext50-32x4d_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/resnext/resnext50_32x4d_b32x8_imagenet_20210429-56066e27.pth] | log [https://download.openmmlab.com/mmclassification/v0/resnext/resnext50_32x4d_b32x8_imagenet_20210429-56066e27.log.json]

	ResNeXt-32x4d-101

	44.18

	8.03

	78.71

	94.12

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext101-32x4d_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x4d_b32x8_imagenet_20210506-e0fa3dd5.pth] | log [https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x4d_b32x8_imagenet_20210506-e0fa3dd5.log.json]

	ResNeXt-32x8d-101

	88.79

	16.5

	79.23

	94.58

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext101-32x8d_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x8d_b32x8_imagenet_20210506-23a247d5.pth] | log [https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x8d_b32x8_imagenet_20210506-23a247d5.log.json]

	ResNeXt-32x4d-152

	59.95

	11.8

	78.93

	94.41

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext152-32x4d_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/resnext/resnext152_32x4d_b32x8_imagenet_20210524-927787be.pth] | log [https://download.openmmlab.com/mmclassification/v0/resnext/resnext152_32x4d_b32x8_imagenet_20210524-927787be.log.json]

	SE-ResNet-50

	28.09

	4.13

	77.74

	93.84

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/seresnet/seresnet50_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet50_batch256_imagenet_20200804-ae206104.pth] | log [https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet50_batch256_imagenet_20200708-657b3c36.log.json]

	SE-ResNet-101

	49.33

	7.86

	78.26

	94.07

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/seresnet/seresnet101_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet101_batch256_imagenet_20200804-ba5b51d4.pth] | log [https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet101_batch256_imagenet_20200708-038a4d04.log.json]

	RegNetX-400MF

	5.16

	0.41

	72.56

	90.78

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-400mf_8xb128_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-400mf_8xb128_in1k_20211213-89bfc226.pth] | log [https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-400mf_8xb128_in1k_20211208_143316.log.json]

	RegNetX-800MF

	7.26

	0.81

	74.76

	92.32

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-800mf_8xb128_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-800mf_8xb128_in1k_20211213-222b0f11.pth] | log [https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-800mf_8xb128_in1k_20211207_143037.log.json]

	RegNetX-1.6GF

	9.19

	1.63

	76.84

	93.31

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-1.6gf_8xb128_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-1.6gf_8xb128_in1k_20211213-d1b89758.pth] | log [https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-1.6gf_8xb128_in1k_20211208_143018.log.json]

	RegNetX-3.2GF

	15.3

	3.21

	78.09

	94.08

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-3.2gf_8xb64_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-3.2gf_8xb64_in1k_20211213-1fdd82ae.pth] | log [https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-3.2gf_8xb64_in1k_20211208_142720.log.json]

	RegNetX-4.0GF

	22.12

	4.0

	78.60

	94.17

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-4.0gf_8xb64_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-4.0gf_8xb64_in1k_20211213-efed675c.pth] | log [https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-4.0gf_8xb64_in1k_20211207_150431.log.json]

	RegNetX-6.4GF

	26.21

	6.51

	79.38

	94.65

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-6.4gf_8xb64_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-6.4gf_8xb64_in1k_20211215-5c6089da.pth] | log [https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-6.4gf_8xb64_in1k_20211213_172748.log.json]

	RegNetX-8.0GF

	39.57

	8.03

	79.12

	94.51

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-8.0gf_8xb64_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-8.0gf_8xb64_in1k_20211213-9a9fcc76.pth] | log [https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-8.0gf_8xb64_in1k_20211208_103250.log.json]

	RegNetX-12GF

	46.11

	12.15

	79.67

	95.03

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-12gf_8xb64_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-12gf_8xb64_in1k_20211213-5df8c2f8.pth] | log [https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-12gf_8xb64_in1k_20211208_143713.log.json]

	ShuffleNetV1 1.0x (group=3)

	1.87

	0.146

	68.13

	87.81

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/shufflenet_v1/shufflenet-v1-1x_16xb64_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/shufflenet_v1/shufflenet_v1_batch1024_imagenet_20200804-5d6cec73.pth] | log [https://download.openmmlab.com/mmclassification/v0/shufflenet_v1/shufflenet_v1_batch1024_imagenet_20200804-5d6cec73.log.json]

	ShuffleNetV2 1.0x

	2.28

	0.149

	69.55

	88.92

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/shufflenet_v2/shufflenet-v2-1x_16xb64_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/shufflenet_v2/shufflenet_v2_batch1024_imagenet_20200812-5bf4721e.pth] | log [https://download.openmmlab.com/mmclassification/v0/shufflenet_v2/shufflenet_v2_batch1024_imagenet_20200804-8860eec9.log.json]

	MobileNet V2

	3.5

	0.319

	71.86

	90.42

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/mobilenet_v2/mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.pth] | log [https://download.openmmlab.com/mmclassification/v0/mobilenet_v2/mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.log.json]

	ViT-B/16*

	86.86

	33.03

	85.43

	97.77

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/vision_transformer/vit-base-p16_ft-64xb64_in1k-384.py]

	model [https://download.openmmlab.com/mmclassification/v0/vit/finetune/vit-base-p16_in21k-pre-3rdparty_ft-64xb64_in1k-384_20210928-98e8652b.pth]

	ViT-B/32*

	88.3

	8.56

	84.01

	97.08

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/vision_transformer/vit-base-p32_ft-64xb64_in1k-384.py]

	model [https://download.openmmlab.com/mmclassification/v0/vit/finetune/vit-base-p32_in21k-pre-3rdparty_ft-64xb64_in1k-384_20210928-9cea8599.pth]

	ViT-L/16*

	304.72

	116.68

	85.63

	97.63

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/vision_transformer/vit-large-p16_ft-64xb64_in1k-384.py]

	model [https://download.openmmlab.com/mmclassification/v0/vit/finetune/vit-large-p16_in21k-pre-3rdparty_ft-64xb64_in1k-384_20210928-b20ba619.pth]

	Swin-Transformer tiny

	28.29

	4.36

	81.18

	95.61

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin-tiny_16xb64_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_tiny_224_b16x64_300e_imagenet_20210616_090925-66df6be6.pth] | log [https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_tiny_224_b16x64_300e_imagenet_20210616_090925.log.json]

	Swin-Transformer small

	49.61

	8.52

	83.02

	96.29

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin-small_16xb64_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_small_224_b16x64_300e_imagenet_20210615_110219-7f9d988b.pth] | log [https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_small_224_b16x64_300e_imagenet_20210615_110219.log.json]

	Swin-Transformer base

	87.77

	15.14

	83.36

	96.44

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin_base_224_b16x64_300e_imagenet.py]

	model [https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_base_224_b16x64_300e_imagenet_20210616_190742-93230b0d.pth] | log [https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_base_224_b16x64_300e_imagenet_20210616_190742.log.json]

	Transformer in Transformer small*

	23.76

	3.36

	81.52

	95.73

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/tnt/tnt-s-p16_16xb64_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/tnt/tnt-small-p16_3rdparty_in1k_20210903-c56ee7df.pth]

	T2T-ViT_t-14

	21.47

	4.34

	81.83

	95.84

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/t2t_vit/t2t-vit-t-14_8xb64_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/t2t-vit/t2t-vit-t-14_8xb64_in1k_20211220-f7378dd5.pth] | log [https://download.openmmlab.com/mmclassification/v0/t2t-vit/t2t-vit-t-14_8xb64_in1k_20211220-f7378dd5.log.json]

	T2T-ViT_t-19

	39.08

	7.80

	82.63

	96.18

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/t2t_vit/t2t-vit-t-19_8xb64_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/t2t-vit/t2t-vit-t-19_8xb64_in1k_20211214-7f5e3aaf.pth] | log [https://download.openmmlab.com/mmclassification/v0/t2t-vit/t2t-vit-t-19_8xb64_in1k_20211214-7f5e3aaf.log.json]

	T2T-ViT_t-24

	64.00

	12.69

	82.71

	96.09

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/t2t_vit/t2t-vit-t-24_8xb64_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/t2t-vit/t2t-vit-t-24_8xb64_in1k_20211214-b2a68ae3.pth] | log [https://download.openmmlab.com/mmclassification/v0/t2t-vit/t2t-vit-t-24_8xb64_in1k_20211214-b2a68ae3.log.json]

	Mixer-B/16*

	59.88

	12.61

	76.68

	92.25

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/mlp_mixer/mlp-mixer-base-p16_64xb64_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/mlp-mixer/mixer-base-p16_3rdparty_64xb64_in1k_20211124-1377e3e0.pth]

	Mixer-L/16*

	208.2

	44.57

	72.34

	88.02

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/mlp_mixer/mlp-mixer-large-p16_64xb64_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/mlp-mixer/mixer-large-p16_3rdparty_64xb64_in1k_20211124-5a2519d2.pth]

	DeiT-tiny

	5.72

	1.08

	74.50

	92.24

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/deit/deit-tiny_pt-4xb256_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/deit/deit-tiny_pt-4xb256_in1k_20220218-13b382a0.pth] | log [https://download.openmmlab.com/mmclassification/v0/deit/deit-tiny_pt-4xb256_in1k_20220218-13b382a0.log.json]

	DeiT-tiny distilled*

	5.72

	1.08

	74.51

	91.90

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/deit/deit-tiny-distilled_pt-4xb256_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/deit/deit-tiny-distilled_3rdparty_pt-4xb256_in1k_20211216-c429839a.pth]

	DeiT-small

	22.05

	4.24

	80.69

	95.06

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/deit/deit-small_pt-4xb256_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/deit/deit-small_pt-4xb256_in1k_20220218-9425b9bb.pth] | log [https://download.openmmlab.com/mmclassification/v0/deit/deit-small_pt-4xb256_in1k_20220218-9425b9bb.log.json]

	DeiT-small distilled*

	22.05

	4.24

	81.17

	95.40

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/deit/deit-small-distilled_pt-4xb256_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/deit/deit-small-distilled_3rdparty_pt-4xb256_in1k_20211216-4de1d725.pth]

	DeiT-base

	86.57

	16.86

	81.76

	95.81

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/deit/deit-base_pt-16xb64_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/deit/deit-base_pt-16xb64_in1k_20220216-db63c16c.pth] | log [https://download.openmmlab.com/mmclassification/v0/deit/deit-base_pt-16xb64_in1k_20220216-db63c16c.log.json]

	DeiT-base distilled*

	86.57

	16.86

	83.33

	96.49

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/deit/deit-base-distilled_pt-16xb64_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/deit/deit-base-distilled_3rdparty_pt-16xb64_in1k_20211216-42891296.pth]

	DeiT-base 384px*

	86.86

	49.37

	83.04

	96.31

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/deit/deit-base_ft-16xb32_in1k-384px.py]

	model [https://download.openmmlab.com/mmclassification/v0/deit/deit-base_3rdparty_ft-16xb32_in1k-384px_20211124-822d02f2.pth]

	DeiT-base distilled 384px*

	86.86

	49.37

	85.55

	97.35

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/deit/deit-base-distilled_ft-16xb32_in1k-384px.py]

	model [https://download.openmmlab.com/mmclassification/v0/deit/deit-base-distilled_3rdparty_ft-16xb32_in1k-384px_20211216-e48d6000.pth]

	Conformer-tiny-p16*

	23.52

	4.90

	81.31

	95.60

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/conformer/conformer-tiny-p16_8xb128_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/conformer/conformer-tiny-p16_3rdparty_8xb128_in1k_20211206-f6860372.pth]

	Conformer-small-p32*

	38.85

	7.09

	81.96

	96.02

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/conformer/conformer-small-p32_8xb128_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/conformer/conformer-small-p32_8xb128_in1k_20211206-947a0816.pth]

	Conformer-small-p16*

	37.67

	10.31

	83.32

	96.46

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/conformer/conformer-small-p16_8xb128_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/conformer/conformer-small-p16_3rdparty_8xb128_in1k_20211206-3065dcf5.pth]

	Conformer-base-p16*

	83.29

	22.89

	83.82

	96.59

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/conformer/conformer-base-p16_8xb128_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/conformer/conformer-base-p16_3rdparty_8xb128_in1k_20211206-bfdf8637.pth]

	PCPVT-small*

	24.11

	3.67

	81.14

	95.69

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/twins/twins-pcpvt-small_8xb128_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/twins/twins-pcpvt-small_3rdparty_8xb128_in1k_20220126-ef23c132.pth]

	PCPVT-base*

	43.83

	6.45

	82.66

	96.26

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/twins/twins-pcpvt-base_8xb128_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/twins/twins-pcpvt-base_3rdparty_8xb128_in1k_20220126-f8c4b0d5.pth]

	PCPVT-large*

	60.99

	9.51

	83.09

	96.59

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/twins/twins-pcpvt-large_16xb64_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/twins/twins-pcpvt-large_3rdparty_16xb64_in1k_20220126-c1ef8d80.pth]

	SVT-small*

	24.06

	2.82

	81.77

	95.57

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/twins/twins-svt-small_8xb128_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/twins/twins-svt-small_3rdparty_8xb128_in1k_20220126-8fe5205b.pth]

	SVT-base*

	56.07

	8.35

	83.13

	96.29

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/twins/twins-svt-base_8xb128_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/twins/twins-svt-base_3rdparty_8xb128_in1k_20220126-e31cc8e9.pth]

	SVT-large*

	99.27

	14.82

	83.60

	96.50

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/twins/twins-svt-large_16xb64_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/twins/twins-svt-large_3rdparty_16xb64_in1k_20220126-4817645f.pth]

	EfficientNet-B0*

	5.29

	0.02

	76.74

	93.17

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b0_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b0_3rdparty_8xb32_in1k_20220119-a7e2a0b1.pth]

	EfficientNet-B0 (AA)*

	5.29

	0.02

	77.26

	93.41

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b0_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b0_3rdparty_8xb32-aa_in1k_20220119-8d939117.pth]

	EfficientNet-B0 (AA + AdvProp)*

	5.29

	0.02

	77.53

	93.61

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b0_8xb32-01norm_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b0_3rdparty_8xb32-aa-advprop_in1k_20220119-26434485.pth]

	EfficientNet-B1*

	7.79

	0.03

	78.68

	94.28

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b1_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b1_3rdparty_8xb32_in1k_20220119-002556d9.pth]

	EfficientNet-B1 (AA)*

	7.79

	0.03

	79.20

	94.42

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b1_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b1_3rdparty_8xb32-aa_in1k_20220119-619d8ae3.pth]

	EfficientNet-B1 (AA + AdvProp)*

	7.79

	0.03

	79.52

	94.43

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b1_8xb32-01norm_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b1_3rdparty_8xb32-aa-advprop_in1k_20220119-5715267d.pth]

	EfficientNet-B2*

	9.11

	0.03

	79.64

	94.80

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b2_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b2_3rdparty_8xb32_in1k_20220119-ea374a30.pth]

	EfficientNet-B2 (AA)*

	9.11

	0.03

	80.21

	94.96

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b2_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b2_3rdparty_8xb32-aa_in1k_20220119-dd61e80b.pth]

	EfficientNet-B2 (AA + AdvProp)*

	9.11

	0.03

	80.45

	95.07

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b2_8xb32-01norm_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b2_3rdparty_8xb32-aa-advprop_in1k_20220119-1655338a.pth]

	EfficientNet-B3*

	12.23

	0.06

	81.01

	95.34

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b3_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b3_3rdparty_8xb32_in1k_20220119-4b4d7487.pth]

	EfficientNet-B3 (AA)*

	12.23

	0.06

	81.58

	95.67

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b3_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b3_3rdparty_8xb32-aa_in1k_20220119-5b4887a0.pth]

	EfficientNet-B3 (AA + AdvProp)*

	12.23

	0.06

	81.81

	95.69

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b3_8xb32-01norm_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b3_3rdparty_8xb32-aa-advprop_in1k_20220119-53b41118.pth]

	EfficientNet-B4*

	19.34

	0.12

	82.57

	96.09

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b4_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b4_3rdparty_8xb32_in1k_20220119-81fd4077.pth]

	EfficientNet-B4 (AA)*

	19.34

	0.12

	82.95

	96.26

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b4_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b4_3rdparty_8xb32-aa_in1k_20220119-45b8bd2b.pth]

	EfficientNet-B4 (AA + AdvProp)*

	19.34

	0.12

	83.25

	96.44

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b4_8xb32-01norm_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b4_3rdparty_8xb32-aa-advprop_in1k_20220119-38c2238c.pth]

	EfficientNet-B5*

	30.39

	0.24

	83.18

	96.47

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b5_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b5_3rdparty_8xb32_in1k_20220119-e9814430.pth]

	EfficientNet-B5 (AA)*

	30.39

	0.24

	83.82

	96.76

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b5_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b5_3rdparty_8xb32-aa_in1k_20220119-2cab8b78.pth]

	EfficientNet-B5 (AA + AdvProp)*

	30.39

	0.24

	84.21

	96.98

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b5_8xb32-01norm_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b5_3rdparty_8xb32-aa-advprop_in1k_20220119-f57a895a.pth]

	EfficientNet-B6 (AA)*

	43.04

	0.41

	84.05

	96.82

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b6_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b6_3rdparty_8xb32-aa_in1k_20220119-45b03310.pth]

	EfficientNet-B6 (AA + AdvProp)*

	43.04

	0.41

	84.74

	97.14

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b6_8xb32-01norm_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b6_3rdparty_8xb32-aa-advprop_in1k_20220119-bfe3485e.pth]

	EfficientNet-B7 (AA)*

	66.35

	0.72

	84.38

	96.88

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b7_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b7_3rdparty_8xb32-aa_in1k_20220119-bf03951c.pth]

	EfficientNet-B7 (AA + AdvProp)*

	66.35

	0.72

	85.14

	97.23

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b7_8xb32-01norm_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b7_3rdparty_8xb32-aa-advprop_in1k_20220119-c6dbff10.pth]

	EfficientNet-B8 (AA + AdvProp)*

	87.41

	1.09

	85.38

	97.28

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b8_8xb32-01norm_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b8_3rdparty_8xb32-aa-advprop_in1k_20220119-297ce1b7.pth]

	ConvNeXt-T*

	28.59

	4.46

	82.05

	95.86

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/convnext/convnext-tiny_32xb128_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/convnext/convnext-tiny_3rdparty_32xb128_in1k_20220124-18abde00.pth]

	ConvNeXt-S*

	50.22

	8.69

	83.13

	96.44

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/convnext/convnext-small_32xb128_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/convnext/convnext-small_3rdparty_32xb128_in1k_20220124-d39b5192.pth]

	ConvNeXt-B*

	88.59

	15.36

	83.85

	96.74

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/convnext/convnext-base_32xb128_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/convnext/convnext-base_3rdparty_32xb128_in1k_20220124-d0915162.pth]

	ConvNeXt-B*

	88.59

	15.36

	85.81

	97.86

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/convnext/convnext-base_32xb128_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/convnext/convnext-base_in21k-pre-3rdparty_32xb128_in1k_20220124-eb2d6ada.pth]

	ConvNeXt-L*

	197.77

	34.37

	84.30

	96.89

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/convnext/convnext-large_64xb64_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/convnext/convnext-large_3rdparty_64xb64_in1k_20220124-f8a0ded0.pth]

	ConvNeXt-L*

	197.77

	34.37

	86.61

	98.04

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/convnext/convnext-large_64xb64_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/convnext/convnext-large_in21k-pre-3rdparty_64xb64_in1k_20220124-2412403d.pth]

	ConvNeXt-XL*

	350.20

	60.93

	86.97

	98.20

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/convnext/convnext-xlarge_64xb64_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/convnext/convnext-xlarge_in21k-pre-3rdparty_64xb64_in1k_20220124-76b6863d.pth]

	HRNet-W18*

	21.30

	4.33

	76.75

	93.44

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w18_4xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/hrnet/hrnet-w18_3rdparty_8xb32_in1k_20220120-0c10b180.pth]

	HRNet-W30*

	37.71

	8.17

	78.19

	94.22

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w30_4xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/hrnet/hrnet-w30_3rdparty_8xb32_in1k_20220120-8aa3832f.pth]

	HRNet-W32*

	41.23

	8.99

	78.44

	94.19

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w32_4xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/hrnet/hrnet-w32_3rdparty_8xb32_in1k_20220120-c394f1ab.pth]

	HRNet-W40*

	57.55

	12.77

	78.94

	94.47

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w40_4xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/hrnet/hrnet-w40_3rdparty_8xb32_in1k_20220120-9a2dbfc5.pth]

	HRNet-W44*

	67.06

	14.96

	78.88

	94.37

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w44_4xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/hrnet/hrnet-w44_3rdparty_8xb32_in1k_20220120-35d07f73.pth]

	HRNet-W48*

	77.47

	17.36

	79.32

	94.52

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w48_4xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/hrnet/hrnet-w48_3rdparty_8xb32_in1k_20220120-e555ef50.pth]

	HRNet-W64*

	128.06

	29.00

	79.46

	94.65

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w64_4xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/hrnet/hrnet-w64_3rdparty_8xb32_in1k_20220120-19126642.pth]

	HRNet-W18 (ssld)*

	21.30

	4.33

	81.06

	95.70

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w18_4xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/hrnet/hrnet-w18_3rdparty_8xb32-ssld_in1k_20220120-455f69ea.pth]

	HRNet-W48 (ssld)*

	77.47

	17.36

	83.63

	96.79

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w48_4xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/hrnet/hrnet-w48_3rdparty_8xb32-ssld_in1k_20220120-d0459c38.pth]

	WRN-50*

	68.88

	11.44

	81.45

	95.53

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/wrn/wide-resnet50_timm_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/wrn/wide-resnet50_3rdparty-timm_8xb32_in1k_20220304-83ae4399.pth]

	WRN-101*

	126.89

	22.81

	78.84

	94.28

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/wrn/wide-resnet101_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/wrn/wide-resnet101_3rdparty_8xb32_in1k_20220304-8d5f9d61.pth]

	CSPDarkNet50*

	27.64

	5.04

	80.05

	95.07

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/cspnet/cspdarknet50_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/cspnet/cspdarknet50_3rdparty_8xb32_in1k_20220329-bd275287.pth]

	CSPResNet50*

	21.62

	3.48

	79.55

	94.68

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/cspnet/cspresnet50_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/cspnet/cspresnet50_3rdparty_8xb32_in1k_20220329-dd6dddfb.pth]

	CSPResNeXt50*

	20.57

	3.11

	79.96

	94.96

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/cspnet/cspresnext50_8xb32_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/cspnet/cspresnext50_3rdparty_8xb32_in1k_20220329-2cc84d21.pth]

	DenseNet121*

	7.98

	2.88

	74.96

	92.21

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/densenet/densenet121_4xb256_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/densenet/densenet121_4xb256_in1k_20220426-07450f99.pth]

	DenseNet169*

	14.15

	3.42

	76.08

	93.11

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/densenet/densenet169_4xb256_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/densenet/densenet169_4xb256_in1k_20220426-a2889902.pth]

	DenseNet201*

	20.01

	4.37

	77.32

	93.64

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/densenet/densenet201_4xb256_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/densenet/densenet201_4xb256_in1k_20220426-05cae4ef.pth]

	DenseNet161*

	28.68

	7.82

	77.61

	93.83

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/densenet/densenet161_4xb256_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/densenet/densenet161_4xb256_in1k_20220426-ee6a80a9.pth]

	VAN-T*

	4.11

	0.88

	75.41

	93.02

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/van/van-tiny_8xb128_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/van/van-tiny_8xb128_in1k_20220501-385941af.pth]

	VAN-S*

	13.86

	2.52

	81.01

	95.63

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/van/van-small_8xb128_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/van/van-small_8xb128_in1k_20220501-17bc91aa.pth]

	VAN-B*

	26.58

	5.03

	82.80

	96.21

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/van/van-base_8xb128_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/van/van-base_8xb128_in1k_20220501-6a4cc31b.pth]

	VAN-L*

	44.77

	8.99

	83.86

	96.73

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/van/van-large_8xb128_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/van/van-large_8xb128_in1k_20220501-f212ba21.pth]

	MViTv2-tiny*

	24.17

	4.70

	82.33

	96.15

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/mvit/mvitv2-tiny_8xb256_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/mvit/mvitv2-tiny_3rdparty_in1k_20220722-db7beeef.pth]

	MViTv2-small*

	34.87

	7.00

	83.63

	96.51

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/mvit/mvitv2-small_8xb256_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/mvit/mvitv2-small_3rdparty_in1k_20220722-986bd741.pth]

	MViTv2-base*

	51.47

	10.20

	84.34

	96.86

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/mvit/mvitv2-base_8xb256_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/mvit/mvitv2-base_3rdparty_in1k_20220722-9c4f0a17.pth]

	MViTv2-large*

	217.99

	42.10

	85.25

	97.14

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/mvit/mvitv2-large_8xb256_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/mvit/mvitv2-large_3rdparty_in1k_20220722-2b57b983.pth]

	EfficientFormer-l1*

	12.19

	1.30

	80.46

	94.99

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientformer/efficientformer-l1_8xb128_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientformer/efficientformer-l1_3rdparty_in1k_20220803-d66e61df.pth]

	EfficientFormer-l3*

	31.41

	3.93

	82.45

	96.18

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientformer/efficientformer-l3_8xb128_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientformer/efficientformer-l3_3rdparty_in1k_20220803-dde1c8c5.pth]

	EfficientFormer-l7*

	82.23

	10.16

	83.40

	96.60

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientformer/efficientformer-l7_8xb128_in1k.py]

	model [https://download.openmmlab.com/mmclassification/v0/efficientformer/efficientformer-l7_3rdparty_in1k_20220803-41a552bb.pth]

Models with * are converted from other repos, others are trained by ourselves.

CIFAR10

	Model

	Params(M)

	Flops(G)

	Top-1 (%)

	Config

	Download

	ResNet-18-b16x8

	11.17

	0.56

	94.82

	

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet18_8xb16_cifar10.py]

	ResNet-34-b16x8

	21.28

	1.16

	95.34

	

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet34_8xb16_cifar10.py]

	ResNet-50-b16x8

	23.52

	1.31

	95.55

	

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb16_cifar10.py]

	ResNet-101-b16x8

	42.51

	2.52

	95.58

	

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet101_8xb16_cifar10.py]

	ResNet-152-b16x8

	58.16

	3.74

	95.76

	

	config [https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet152_8xb16_cifar10.py]

Conformer

Conformer: Local Features Coupling Global Representations for Visual Recognition [https://arxiv.org/abs/2105.03889]

Abstract

Within Convolutional Neural Network (CNN), the convolution operations are good at extracting local features but experience difficulty to capture global representations. Within visual transformer, the cascaded self-attention modules can capture long-distance feature dependencies but unfortunately deteriorate local feature details. In this paper, we propose a hybrid network structure, termed Conformer, to take advantage of convolutional operations and self-attention mechanisms for enhanced representation learning. Conformer roots in the Feature Coupling Unit (FCU), which fuses local features and global representations under different resolutions in an interactive fashion. Conformer adopts a concurrent structure so that local features and global representations are retained to the maximum extent. Experiments show that Conformer, under the comparable parameter complexity, outperforms the visual transformer (DeiT-B) by 2.3% on ImageNet. On MSCOCO, it outperforms ResNet-101 by 3.7% and 3.6% mAPs for object detection and instance segmentation, respectively, demonstrating the great potential to be a general backbone network.

 ConvMixer

ConvMixer

Patches Are All You Need? [https://arxiv.org/abs/2201.09792]

Abstract

Although convolutional networks have been the dominant architecture for vision tasks for many years, recent experiments have shown that Transformer-based models, most notably the Vision Transformer (ViT), may exceed their performance in some settings. However, due to the quadratic runtime of the self-attention layers in Transformers, ViTs require the use of patch embeddings, which group together small regions of the image into single input features, in order to be applied to larger image sizes. This raises a question: Is the performance of ViTs due to the inherently-more-powerful Transformer architecture, or is it at least partly due to using patches as the input representation? In this paper, we present some evidence for the latter: specifically, we propose the ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on patches as input, separates the mixing of spatial and channel dimensions, and maintains equal size and resolution throughout the network. In contrast, however, the ConvMixer uses only standard convolutions to achieve the mixing steps. Despite its simplicity, we show that the ConvMixer outperforms the ViT, MLP-Mixer, and some of their variants for similar parameter counts and data set sizes, in addition to outperforming classical vision models such as the ResNet.

 ConvNeXt

ConvNeXt

A ConvNet for the 2020s [https://arxiv.org/abs/2201.03545v1]

Abstract

The “Roaring 20s” of visual recognition began with the introduction of Vision Transformers (ViTs), which quickly superseded ConvNets as the state-of-the-art image classification model. A vanilla ViT, on the other hand, faces difficulties when applied to general computer vision tasks such as object detection and semantic segmentation. It is the hierarchical Transformers (e.g., Swin Transformers) that reintroduced several ConvNet priors, making Transformers practically viable as a generic vision backbone and demonstrating remarkable performance on a wide variety of vision tasks. However, the effectiveness of such hybrid approaches is still largely credited to the intrinsic superiority of Transformers, rather than the inherent inductive biases of convolutions. In this work, we reexamine the design spaces and test the limits of what a pure ConvNet can achieve. We gradually “modernize” a standard ResNet toward the design of a vision Transformer, and discover several key components that contribute to the performance difference along the way. The outcome of this exploration is a family of pure ConvNet models dubbed ConvNeXt. Constructed entirely from standard ConvNet modules, ConvNeXts compete favorably with Transformers in terms of accuracy and scalability, achieving 87.8% ImageNet top-1 accuracy and outperforming Swin Transformers on COCO detection and ADE20K segmentation, while maintaining the simplicity and efficiency of standard ConvNets.

 CSPNet

CSPNet

CSPNet: A New Backbone that can Enhance Learning Capability of CNN [https://arxiv.org/abs/1911.11929]

Abstract

Neural networks have enabled state-of-the-art approaches to achieve incredible results on computer vision tasks such as object detection. However, such success greatly relies on costly computation resources, which hinders people with cheap devices from appreciating the advanced technology. In this paper, we propose Cross Stage Partial Network (CSPNet) to mitigate the problem that previous works require heavy inference computations from the network architecture perspective. We attribute the problem to the duplicate gradient information within network optimization. The proposed networks respect the variability of the gradients by integrating feature maps from the beginning and the end of a network stage, which, in our experiments, reduces computations by 20% with equivalent or even superior accuracy on the ImageNet dataset, and significantly outperforms state-of-the-art approaches in terms of AP50 on the MS COCO object detection dataset. The CSPNet is easy to implement and general enough to cope with architectures based on ResNet, ResNeXt, and DenseNet. Source code is at this https URL.

 CSRA

CSRA

Residual Attention: A Simple but Effective Method for Multi-Label Recognition [https://arxiv.org/abs/2108.02456]

Abstract

Multi-label image recognition is a challenging computer vision task of practical use. Progresses in this area, however, are often characterized by complicated methods, heavy computations, and lack of intuitive explanations. To effectively capture different spatial regions occupied by objects from different categories, we propose an embarrassingly simple module, named class-specific residual attention (CSRA). CSRA generates class-specific features for every category by proposing a simple spatial attention score, and then combines it with the class-agnostic average pooling feature. CSRA achieves state-of-the-art results on multilabel recognition, and at the same time is much simpler than them. Furthermore, with only 4 lines of code, CSRA also leads to consistent improvement across many diverse pretrained models and datasets without any extra training. CSRA is both easy to implement and light in computations, which also enjoys intuitive explanations and visualizations.

 DeiT

DeiT

Training data-efficient image transformers & distillation through attention [https://arxiv.org/abs/2012.12877]

Abstract

Recently, neural networks purely based on attention were shown to address image understanding tasks such as image classification. However, these visual transformers are pre-trained with hundreds of millions of images using an expensive infrastructure, thereby limiting their adoption. In this work, we produce a competitive convolution-free transformer by training on Imagenet only. We train them on a single computer in less than 3 days. Our reference vision transformer (86M parameters) achieves top-1 accuracy of 83.1% (single-crop evaluation) on ImageNet with no external data. More importantly, we introduce a teacher-student strategy specific to transformers. It relies on a distillation token ensuring that the student learns from the teacher through attention. We show the interest of this token-based distillation, especially when using a convnet as a teacher. This leads us to report results competitive with convnets for both Imagenet (where we obtain up to 85.2% accuracy) and when transferring to other tasks. We share our code and models.

 DenseNet

DenseNet

Densely Connected Convolutional Networks [https://arxiv.org/abs/1608.06993]

Abstract

Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connections - one between each layer and its subsequent layer - our network has L(L+1)/2 direct connections. For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers. DenseNets have several compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters. We evaluate our proposed architecture on four highly competitive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet). DenseNets obtain significant improvements over the state-of-the-art on most of them, whilst requiring less computation to achieve high performance.

 EfficientFormer

EfficientFormer

EfficientFormer: Vision Transformers at MobileNet Speed [https://arxiv.org/abs/2206.01191]

Abstract

Vision Transformers (ViT) have shown rapid progress in computer vision tasks, achieving promising results on various benchmarks. However, due to the massive number of parameters and model design, e.g., attention mechanism, ViT-based models are generally times slower than lightweight convolutional networks. Therefore, the deployment of ViT for real-time applications is particularly challenging, especially on resource-constrained hardware such as mobile devices. Recent efforts try to reduce the computation complexity of ViT through network architecture search or hybrid design with MobileNet block, yet the inference speed is still unsatisfactory. This leads to an important question: can transformers run as fast as MobileNet while obtaining high performance? To answer this, we first revisit the network architecture and operators used in ViT-based models and identify inefficient designs. Then we introduce a dimension-consistent pure transformer (without MobileNet blocks) as a design paradigm. Finally, we perform latency-driven slimming to get a series of final models dubbed EfficientFormer. Extensive experiments show the superiority of EfficientFormer in performance and speed on mobile devices. Our fastest model, EfficientFormer-L1, achieves 79.2% top-1 accuracy on ImageNet-1K with only 1.6 ms inference latency on iPhone 12 (compiled with CoreML), which runs as fast as MobileNetV2×1.4 (1.6 ms, 74.7% top-1), and our largest model, EfficientFormer-L7, obtains 83.3% accuracy with only 7.0 ms latency. Our work proves that properly designed transformers can reach extremely low latency on mobile devices while maintaining high performance.

 EfficientNet

EfficientNet

Rethinking Model Scaling for Convolutional Neural Networks [https://arxiv.org/abs/1905.11946v5]

Abstract

Convolutional Neural Networks (ConvNets) are commonly developed at a fixed resource budget, and then scaled up for better accuracy if more resources are available. In this paper, we systematically study model scaling and identify that carefully balancing network depth, width, and resolution can lead to better performance. Based on this observation, we propose a new scaling method that uniformly scales all dimensions of depth/width/resolution using a simple yet highly effective compound coefficient. We demonstrate the effectiveness of this method on scaling up MobileNets and ResNet. To go even further, we use neural architecture search to design a new baseline network and scale it up to obtain a family of models, called EfficientNets, which achieve much better accuracy and efficiency than previous ConvNets. In particular, our EfficientNet-B7 achieves state-of-the-art 84.3% top-1 accuracy on ImageNet, while being 8.4x smaller and 6.1x faster on inference than the best existing ConvNet. Our EfficientNets also transfer well and achieve state-of-the-art accuracy on CIFAR-100 (91.7%), Flowers (98.8%), and 3 other transfer learning datasets, with an order of magnitude fewer parameters.

 HorNet

HorNet

HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions [https://arxiv.org/pdf/2207.14284v2.pdf]

Abstract

Recent progress in vision Transformers exhibits great success in various tasks driven by the new spatial modeling mechanism based on dot-product self-attention. In this paper, we show that the key ingredients behind the vision Transformers, namely input-adaptive, long-range and high-order spatial interactions, can also be efficiently implemented with a convolution-based framework. We present the Recursive Gated Convolution (g nConv) that performs high-order spatial interactions with gated convolutions and recursive designs. The new operation is highly flexible and customizable, which is compatible with various variants of convolution and extends the two-order interactions in self-attention to arbitrary orders without introducing significant extra computation. g nConv can serve as a plug-and-play module to improve various vision Transformers and convolution-based models. Based on the operation, we construct a new family of generic vision backbones named HorNet. Extensive experiments on ImageNet classification, COCO object detection and ADE20K semantic segmentation show HorNet outperform Swin Transformers and ConvNeXt by a significant margin with similar overall architecture and training configurations. HorNet also shows favorable scalability to more training data and a larger model size. Apart from the effectiveness in visual encoders, we also show g nConv can be applied to task-specific decoders and consistently improve dense prediction performance with less computation. Our results demonstrate that g nConv can be a new basic module for visual modeling that effectively combines the merits of both vision Transformers and CNNs. Code is available at https://github.com/raoyongming/HorNet.

 HRNet

HRNet

Deep High-Resolution Representation Learning for Visual Recognition [https://arxiv.org/abs/1908.07919v2]

Abstract

High-resolution representations are essential for position-sensitive vision problems, such as human pose estimation, semantic segmentation, and object detection. Existing state-of-the-art frameworks first encode the input image as a low-resolution representation through a subnetwork that is formed by connecting high-to-low resolution convolutions in series (e.g., ResNet, VGGNet), and then recover the high-resolution representation from the encoded low-resolution representation. Instead, our proposed network, named as High-Resolution Network (HRNet), maintains high-resolution representations through the whole process. There are two key characteristics: (i) Connect the high-to-low resolution convolution streams in parallel; (ii) Repeatedly exchange the information across resolutions. The benefit is that the resulting representation is semantically richer and spatially more precise. We show the superiority of the proposed HRNet in a wide range of applications, including human pose estimation, semantic segmentation, and object detection, suggesting that the HRNet is a stronger backbone for computer vision problems.

 Mlp-Mixer

Mlp-Mixer

MLP-Mixer: An all-MLP Architecture for Vision [https://arxiv.org/abs/2105.01601]

Abstract

Convolutional Neural Networks (CNNs) are the go-to model for computer vision. Recently, attention-based networks, such as the Vision Transformer, have also become popular. In this paper we show that while convolutions and attention are both sufficient for good performance, neither of them are necessary. We present MLP-Mixer, an architecture based exclusively on multi-layer perceptrons (MLPs). MLP-Mixer contains two types of layers: one with MLPs applied independently to image patches (i.e. “mixing” the per-location features), and one with MLPs applied across patches (i.e. “mixing” spatial information). When trained on large datasets, or with modern regularization schemes, MLP-Mixer attains competitive scores on image classification benchmarks, with pre-training and inference cost comparable to state-of-the-art models. We hope that these results spark further research beyond the realms of well established CNNs and Transformers.

 MobileNet V2

MobileNet V2

MobileNetV2: Inverted Residuals and Linear Bottlenecks [https://arxiv.org/abs/1801.04381]

Abstract

In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes. We also describe efficient ways of applying these mobile models to object detection in a novel framework we call SSDLite. Additionally, we demonstrate how to build mobile semantic segmentation models through a reduced form of DeepLabv3 which we call Mobile DeepLabv3.

The MobileNetV2 architecture is based on an inverted residual structure where the input and output of the residual block are thin bottleneck layers opposite to traditional residual models which use expanded representatio