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2 GET STARTED



CHAPTER

ONE

PREREQUISITES

In this section we demonstrate how to prepare an environment with PyTorch.

MMClassification works on Linux, Windows and macOS. It requires Python 3.6+, CUDA 9.2+ and PyTorch 1.5+.

Note: If you are experienced with PyTorch and have already installed it, just skip this part and jump to the next section.
Otherwise, you can follow these steps for the preparation.

Step 1. Download and install Miniconda from the official website.

Step 2. Create a conda environment and activate it.

conda create --name openmmlab python=3.8 -y
conda activate openmmlab

Step 3. Install PyTorch following official instructions, e.g.

On GPU platforms:

conda install pytorch torchvision -c pytorch

Warning: This command will automatically install the latest version PyTorch and cudatoolkit, please check
whether they matches your environment.

On CPU platforms:

conda install pytorch torchvision cpuonly -c pytorch
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CHAPTER

TWO

INSTALLATION

We recommend that users follow our best practices to install MMClassification. However, the whole process is highly
customizable. See Customize Installation section for more information.

2.1 Best Practices

Step 0. Install MMCV using MIM.

pip install -U openmim
mim install mmcv-full

Step 1. Install MMClassification.

According to your needs, we support two install modes:

• Install from source (Recommended): You want to develop your own image classification task or new features
based on MMClassification framework. For example, you want to add new dataset or new models. And you can
use all tools we provided.

• Install as a Python package: You just want to call MMClassification’s APIs or import MMClassification’s mod-
ules in your project.

2.1.1 Install from source

In this case, install mmcls from source:

git clone https://github.com/open-mmlab/mmclassification.git
cd mmclassification
pip install -v -e .
# "-v" means verbose, or more output
# "-e" means installing a project in editable mode,
# thus any local modifications made to the code will take effect without reinstallation.

Optionally, if you want to contribute to MMClassification or experience experimental functions, please checkout to the
dev branch:

git checkout dev

5
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2.1.2 Install as a Python package

Just install with pip.

pip install mmcls

2.2 Verify the installation

To verify whether MMClassification is installed correctly, we provide some sample codes to run an inference demo.

Step 1. We need to download config and checkpoint files.

mim download mmcls --config resnet50_8xb32_in1k --dest .

Step 2. Verify the inference demo.

Option (a). If you install mmcls from source, just run the following command:

python demo/image_demo.py demo/demo.JPEG resnet50_8xb32_in1k.py resnet50_8xb32_in1k_
→˓20210831-ea4938fc.pth --device cpu

You will see the output result dict including pred_label, pred_score and pred_class in your terminal. And if you
have graphical interface (instead of remote terminal etc.), you can enable --show option to show the demo image with
these predictions in a window.

Option (b). If you install mmcls as a python package, open you python interpreter and copy&paste the following codes.

from mmcls.apis import init_model, inference_model

config_file = 'resnet50_8xb32_in1k.py'
checkpoint_file = 'resnet50_8xb32_in1k_20210831-ea4938fc.pth'
model = init_model(config_file, checkpoint_file, device='cpu') # or device='cuda:0'
inference_model(model, 'demo/demo.JPEG')

You will see a dict printed, including the predicted label, score and category name.

2.3 Customize Installation

2.3.1 CUDA versions

When installing PyTorch, you need to specify the version of CUDA. If you are not clear on which to choose, follow our
recommendations:

• For Ampere-based NVIDIA GPUs, such as GeForce 30 series and NVIDIA A100, CUDA 11 is a must.

• For older NVIDIA GPUs, CUDA 11 is backward compatible, but CUDA 10.2 offers better compatibility and is
more lightweight.

Please make sure the GPU driver satisfies the minimum version requirements. See this table for more information.

Note: Installing CUDA runtime libraries is enough if you follow our best practices, because no CUDA code will be
compiled locally. However if you hope to compile MMCV from source or develop other CUDA operators, you need to

6 Chapter 2. Installation
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install the complete CUDA toolkit from NVIDIA’s website, and its version should match the CUDA version of PyTorch.
i.e., the specified version of cudatoolkit in conda install command.

2.3.2 Install MMCV without MIM

MMCV contains C++ and CUDA extensions, thus depending on PyTorch in a complex way. MIM solves such depen-
dencies automatically and makes the installation easier. However, it is not a must.

To install MMCV with pip instead of MIM, please follow MMCV installation guides. This requires manually specifying
a find-url based on PyTorch version and its CUDA version.

For example, the following command install mmcv-full built for PyTorch 1.10.x and CUDA 11.3.

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.
→˓html

2.3.3 Install on CPU-only platforms

MMClassification can be built for CPU only environment. In CPU mode you can train (requires MMCV version >=
1.4.4), test or inference a model.

Some functionalities are gone in this mode, usually GPU-compiled ops. But don’t worry, almost all models in MM-
Classification don’t depends on these ops.

2.3.4 Install on Google Colab

Google Colab usually has PyTorch installed, thus we only need to install MMCV and MMClassification with the
following commands.

Step 1. Install MMCV using MIM.

!pip3 install openmim
!mim install mmcv-full

Step 2. Install MMClassification from the source.

!git clone https://github.com/open-mmlab/mmclassification.git
%cd mmclassification
!pip install -e .

Step 3. Verification.

import mmcls
print(mmcls.__version__)
# Example output: 0.23.0 or newer

Note: Within Jupyter, the exclamation mark ! is used to call external executables and %cd is a magic command to
change the current working directory of Python.

2.3. Customize Installation 7
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2.3.5 Using MMClassification with Docker

We provide a Dockerfile to build an image. Ensure that your docker version >=19.03.

# build an image with PyTorch 1.8.1, CUDA 10.2
# If you prefer other versions, just modified the Dockerfile
docker build -t mmclassification docker/

Run it with

docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmclassification/data␣
→˓mmclassification

2.4 Trouble shooting

If you have some issues during the installation, please first view the FAQ page. You may open an issue on GitHub if
no solution is found.

8 Chapter 2. Installation
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CHAPTER

THREE

GETTING STARTED

This page provides basic tutorials about the usage of MMClassification.

3.1 Prepare datasets

It is recommended to symlink the dataset root to $MMCLASSIFICATION/data. If your folder structure is different, you
may need to change the corresponding paths in config files.

mmclassification
mmcls
tools
configs
docs
data

imagenet
meta
train
val

cifar
cifar-10-batches-py

mnist
train-images-idx3-ubyte
train-labels-idx1-ubyte
t10k-images-idx3-ubyte
t10k-labels-idx1-ubyte

For ImageNet, it has multiple versions, but the most commonly used one is ILSVRC 2012. It can be accessed with the
following steps.

1. Register an account and login to the download page.

2. Find download links for ILSVRC2012 and download the following two files

• ILSVRC2012_img_train.tar (~138GB)

• ILSVRC2012_img_val.tar (~6.3GB)

3. Untar the downloaded files

4. Download meta data using this script

For MNIST, CIFAR10 and CIFAR100, the datasets will be downloaded and unzipped automatically if they are not
found.

9
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For using custom datasets, please refer to Tutorial 3: Customize Dataset.

3.2 Inference with pretrained models

We provide scripts to inference a single image, inference a dataset and test a dataset (e.g., ImageNet).

3.2.1 Inference a single image

python demo/image_demo.py ${IMAGE_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE}

# Example
python demo/image_demo.py demo/demo.JPEG configs/resnet/resnet50_8xb32_in1k.py \
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb32_in1k_20210831-

→˓ea4938fc.pth

3.2.2 Inference and test a dataset

• single GPU

• CPU

• single node multiple GPU

• multiple node

You can use the following commands to infer a dataset.

# single-gpu
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--metrics ${METRICS}] [--out $
→˓{RESULT_FILE}]

# CPU: disable GPUs and run single-gpu testing script
export CUDA_VISIBLE_DEVICES=-1
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--metrics ${METRICS}] [--out $
→˓{RESULT_FILE}]

# multi-gpu
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--metrics ${METRICS}]␣
→˓[--out ${RESULT_FILE}]

# multi-node in slurm environment
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--metrics ${METRICS}] [--out $
→˓{RESULT_FILE}] --launcher slurm

Optional arguments:

• RESULT_FILE: Filename of the output results. If not specified, the results will not be saved to a file. Support
formats include json, yaml and pickle.

• METRICS：Items to be evaluated on the results, like accuracy, precision, recall, etc.

Examples:

Infer ResNet-50 on CIFAR10 validation set to get predicted labels and their corresponding predicted scores.

10 Chapter 3. Getting Started
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python tools/test.py configs/resnet/resnet50_8xb16_cifar10.py \
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar10_

→˓20210528-f54bfad9.pth \
--out result.pkl

3.3 Train a model

MMClassification implements distributed training and non-distributed training, which uses
MMDistributedDataParallel and MMDataParallel respectively.

All outputs (log files and checkpoints) will be saved to the working directory, which is specified by work_dir in the
config file.

By default we evaluate the model on the validation set after each epoch, you can change the evaluation interval by
adding the interval argument in the training config.

evaluation = dict(interval=12) # Evaluate the model per 12 epochs.

3.3.1 Train with a single GPU

python tools/train.py ${CONFIG_FILE} [optional arguments]

If you want to specify the working directory in the command, you can add an argument --work_dir
${YOUR_WORK_DIR}.

3.3.2 Train with CPU

The process of training on the CPU is consistent with single GPU training. We just need to disable GPUs before the
training process.

export CUDA_VISIBLE_DEVICES=-1

And then run the script above.

Warning: The process of training on the CPU is consistent with single GPU training. We just need to disable
GPUs before the training process.

3.3.3 Train with multiple GPUs in single machine

./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]

Optional arguments are:

• --no-validate (not suggested): By default, the codebase will perform evaluation at every k (default value is
1) epochs during the training. To disable this behavior, use --no-validate.

• --work-dir ${WORK_DIR}: Override the working directory specified in the config file.

• --resume-from ${CHECKPOINT_FILE}: Resume from a previous checkpoint file.

3.3. Train a model 11
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Difference between resume-from and load-from: resume-from loads both the model weights and optimizer status,
and the epoch is also inherited from the specified checkpoint. It is usually used for resuming the training process that
is interrupted accidentally. load-from only loads the model weights and the training epoch starts from 0. It is usually
used for finetuning.

3.3.4 Train with multiple machines

If you launch with multiple machines simply connected with ethernet, you can simply run following commands:

On the first machine:

NNODES=2 NODE_RANK=0 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.sh
→˓$CONFIG $GPUS

On the second machine:

NNODES=2 NODE_RANK=1 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.sh
→˓$CONFIG $GPUS

Usually it is slow if you do not have high speed networking like InfiniBand.

If you run MMClassification on a cluster managed with slurm, you can use the script slurm_train.sh. (This script
also supports single machine training.)

[GPUS=${GPUS}] ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR}

You can check slurm_train.sh for full arguments and environment variables.

If you have just multiple machines connected with ethernet, you can refer to PyTorch launch utility. Usually it is slow
if you do not have high speed networking like InfiniBand.

3.3.5 Launch multiple jobs on a single machine

If you launch multiple jobs on a single machine, e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs, you need
to specify different ports (29500 by default) for each job to avoid communication conflict.

If you use dist_train.sh to launch training jobs, you can set the port in commands.

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh ${CONFIG_FILE} 4
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh ${CONFIG_FILE} 4

If you use launch training jobs with Slurm, you need to modify the config files (usually the 6th line from the bottom in
config files) to set different communication ports.

In config1.py,

dist_params = dict(backend='nccl', port=29500)

In config2.py,

dist_params = dict(backend='nccl', port=29501)

Then you can launch two jobs with config1.py ang config2.py.

12 Chapter 3. Getting Started
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CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME}␣
→˓config1.py ${WORK_DIR}
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME}␣
→˓config2.py ${WORK_DIR}

3.3.6 Train with IPU

The process of training on the IPU is consistent with single GPU training. We just need to have IPU machine and
environment and add an extra argument --ipu-replicas ${IPU_NUM}

3.4 Useful tools

We provide lots of useful tools under tools/ directory.

3.4.1 Get the FLOPs and params (experimental)

We provide a script adapted from flops-counter.pytorch to compute the FLOPs and params of a given model.

python tools/analysis_tools/get_flops.py ${CONFIG_FILE} [--shape ${INPUT_SHAPE}]

You will get the result like this.

==============================
Input shape: (3, 224, 224)
Flops: 4.12 GFLOPs
Params: 25.56 M
==============================

Warning: This tool is still experimental and we do not guarantee that the number is correct. You may well use
the result for simple comparisons, but double check it before you adopt it in technical reports or papers.

• FLOPs are related to the input shape while parameters are not. The default input shape is (1, 3, 224, 224).

• Some operators are not counted into FLOPs like GN and custom operators. Refer to mmcv.cnn.
get_model_complexity_info() for details.

3.4.2 Publish a model

Before you publish a model, you may want to

1. Convert model weights to CPU tensors.

2. Delete the optimizer states.

3. Compute the hash of the checkpoint file and append the hash id to the filename.

python tools/convert_models/publish_model.py ${INPUT_FILENAME} ${OUTPUT_FILENAME}

E.g.,

3.4. Useful tools 13
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python tools/convert_models/publish_model.py work_dirs/resnet50/latest.pth imagenet_
→˓resnet50.pth

The final output filename will be imagenet_resnet50_{date}-{hash id}.pth.

3.5 Tutorials

Currently, we provide five tutorials for users.

• learn about config

• finetune models

• add new dataset

• design data pipeline

• add new modules

• customize schedule

• customize runtime settings.

14 Chapter 3. Getting Started



CHAPTER

FOUR

TUTORIAL 1: LEARN ABOUT CONFIGS

MMClassification mainly uses python files as configs. The design of our configuration file system integrates modularity
and inheritance, facilitating users to conduct various experiments. All configuration files are placed in the configs
folder, which mainly contains the primitive configuration folder of _base_ and many algorithm folders such as resnet,
swin_transformer, vision_transformer, etc.

If you wish to inspect the config file, you may run python tools/misc/print_config.py /PATH/TO/CONFIG to
see the complete config.

• Config File and Checkpoint Naming Convention

• Config File Structure

• Inherit and Modify Config File

– Use intermediate variables in configs

– Ignore some fields in the base configs

– Use some fields in the base configs

• Modify config through script arguments

• Import user-defined modules

• FAQ

4.1 Config File and Checkpoint Naming Convention

We follow the below convention to name config files. Contributors are advised to follow the same style. The config
file names are divided into four parts: algorithm info, module information, training information and data information.
Logically, different parts are concatenated by underscores '_', and words in the same part are concatenated by dashes
'-'.

{algorithm info}_{module info}_{training info}_{data info}.py

• algorithm info：algorithm information, model name and neural network architecture, such as resnet, etc.;

• module info： module information is used to represent some special neck, head and pretrain information;

• training info：Training information, some training schedule, including batch size, lr schedule, data augment
and the like;

• data info：Data information, dataset name, input size and so on, such as imagenet, cifar, etc.;

15



MMClassification Documentation, Release 0.25.0

4.1.1 Algorithm information

The main algorithm name and the corresponding branch architecture information. E.g：

• resnet50

• mobilenet-v3-large

• vit-small-patch32 : patch32 represents the size of the partition in ViT algorithm;

• seresnext101-32x4d : SeResNet101 network structure, 32x4d means that groups and width_per_group
are 32 and 4 respectively in Bottleneck;

4.1.2 Module information

Some special neck, head and pretrain information. In classification tasks, pretrain information is the most com-
monly used:

• in21k-pre : pre-trained on ImageNet21k;

• in21k-pre-3rd-party : pre-trained on ImageNet21k and the checkpoint is converted from a third-party repos-
itory;

4.1.3 Training information

Training schedule, including training type, batch size, lr schedule, data augment, special loss functions and so
on:

• format {gpu x batch_per_gpu}, such as 8xb32

Training type (mainly seen in the transformer network, such as the ViT algorithm, which is usually divided into two
training type: pre-training and fine-tuning):

• ft : configuration file for fine-tuning

• pt : configuration file for pretraining

Training recipe. Usually, only the part that is different from the original paper will be marked. These methods will be
arranged in the order {pipeline aug}-{train aug}-{loss trick}-{scheduler}-{epochs}.

• coslr-200e : use cosine scheduler to train 200 epochs

• autoaug-mixup-lbs-coslr-50e : use autoaug, mixup, label smooth, cosine scheduler to train 50
epochs

4.1.4 Data information

• in1k : ImageNet1k dataset, default to use the input image size of 224x224;

• in21k : ImageNet21k dataset, also called ImageNet22k dataset, default to use the input image size of 224x224;

• in1k-384px : Indicates that the input image size is 384x384;

• cifar100

16 Chapter 4. Tutorial 1: Learn about Configs
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4.1.5 Config File Name Example

repvgg-D2se_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py

• repvgg-D2se: Algorithm information

– repvgg: The main algorithm.

– D2se: The architecture.

• deploy: Module information, means the backbone is in the deploy state.

• 4xb64-autoaug-lbs-mixup-coslr-200e: Training information.

– 4xb64: Use 4 GPUs and the size of batches per GPU is 64.

– autoaug: Use AutoAugment in training pipeline.

– lbs: Use label smoothing loss.

– mixup: Use mixup training augment method.

– coslr: Use cosine learning rate scheduler.

– 200e: Train the model for 200 epochs.

• in1k: Dataset information. The config is for ImageNet1k dataset and the input size is 224x224.

Note: Some configuration files currently do not follow this naming convention, and related files will be updated in the
near future.

4.1.6 Checkpoint Naming Convention

The naming of the weight mainly includes the configuration file name, date and hash value.

{config_name}_{date}-{hash}.pth

4.2 Config File Structure

There are four kinds of basic component file in the configs/_base_ folders, namely：

• models

• datasets

• schedules

• runtime

You can easily build your own training config file by inherit some base config files. And the configs that are composed
by components from _base_ are called primitive.

For easy understanding, we use ResNet50 primitive config as a example and comment the meaning of each line. For
more detaile, please refer to the API documentation.

4.2. Config File Structure 17
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_base_ = [
'../_base_/models/resnet50.py', # model
'../_base_/datasets/imagenet_bs32.py', # data
'../_base_/schedules/imagenet_bs256.py', # training schedule
'../_base_/default_runtime.py' # runtime setting

]

The four parts are explained separately below, and the above-mentioned ResNet50 primitive config are also used as an
example.

4.2.1 model

The parameter "model" is a python dictionary in the configuration file, which mainly includes information such as
network structure and loss function:

• type： Classifier name, MMCls supports ImageClassifier, refer to API documentation.

• backbone： Backbone configs, refer to API documentation for available options.

• neck：Neck network name, MMCls supports GlobalAveragePooling, please refer to API documentation.

• head: Head network name, MMCls supports single-label and multi-label classification head networks, available
options refer to API documentation.

– loss: Loss function type, supports CrossEntropyLoss, LabelSmoothLoss etc., For available options,
refer to API documentation.

• train_cfg：Training augment config, MMCls supports mixup, cutmix and other augments.

Note: The ‘type’ in the configuration file is not a constructed parameter, but a class name.

model = dict(
type='ImageClassifier', # Classifier name
backbone=dict(

type='ResNet', # Backbones name
depth=50, # depth of backbone, ResNet has options of 18, 34, 50,␣

→˓101, 152.
num_stages=4, # number of stages，The feature maps generated by these␣

→˓states are used as the input for the subsequent neck and head.
out_indices=(3, ), # The output index of the output feature maps.
frozen_stages=-1, # the stage to be frozen, '-1' means not be forzen
style='pytorch'), # The style of backbone, 'pytorch' means that stride 2␣

→˓layers are in 3x3 conv, 'caffe' means stride 2 layers are in 1x1 convs.
neck=dict(type='GlobalAveragePooling'), # neck network name
head=dict(

type='LinearClsHead', # linear classification head，
num_classes=1000, # The number of output categories, consistent with the␣

→˓number of categories in the dataset
in_channels=2048, # The number of input channels, consistent with the␣

→˓output channel of the neck
loss=dict(type='CrossEntropyLoss', loss_weight=1.0), # Loss function␣

→˓configuration information
topk=(1, 5), # Evaluation index, Top-k accuracy rate, here is the␣

→˓accuracy rate of top1 and top5
(continues on next page)
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))

4.2.2 data

The parameter "data" is a python dictionary in the configuration file, which mainly includes information to construct
dataloader:

• samples_per_gpu : the BatchSize of each GPU when building the dataloader

• workers_per_gpu : the number of threads per GPU when building dataloader

• train ｜ val ｜ test : config to construct dataset

– type: Dataset name, MMCls supports ImageNet, Cifar etc., refer to API documentation

– data_prefix : Dataset root directory

– pipeline : Data processing pipeline, refer to related tutorial CUSTOM DATA PIPELINES

The parameter evaluation is also a dictionary, which is the configuration information of evaluation hook, mainly
including evaluation interval, evaluation index, etc..

# dataset settings
dataset_type = 'ImageNet' # dataset name，
img_norm_cfg = dict( # Image normalization config to normalize the input images

mean=[123.675, 116.28, 103.53], # Mean values used to pre-training the pre-trained␣
→˓backbone models

std=[58.395, 57.12, 57.375], # Standard variance used to pre-training the pre-
→˓trained backbone models

to_rgb=True) # Whether to invert the color channel, rgb2bgr or␣
→˓bgr2rgb.
# train data pipeline
train_pipeline = [

dict(type='LoadImageFromFile'), # First pipeline to load images from␣
→˓file path

dict(type='RandomResizedCrop', size=224), # RandomResizedCrop
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'), # Randomly flip the␣

→˓picture horizontally with a probability of 0.5
dict(type='Normalize', **img_norm_cfg), # normalization
dict(type='ImageToTensor', keys=['img']), # convert image from numpy into torch.

→˓Tensor
dict(type='ToTensor', keys=['gt_label']), # convert gt_label into torch.Tensor
dict(type='Collect', keys=['img', 'gt_label']) # Pipeline that decides which keys in␣

→˓the data should be passed to the detector
]
# test data pipeline
test_pipeline = [

dict(type='LoadImageFromFile'),
dict(type='Resize', size=(256, -1)),
dict(type='CenterCrop', crop_size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']) # do not pass gt_label while testing

]
(continues on next page)
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data = dict(
samples_per_gpu=32, # Batch size of a single GPU
workers_per_gpu=2, # Worker to pre-fetch data for each single GPU
train=dict( # Train dataset config
train=dict( # train data config

type=dataset_type, # dataset name
data_prefix='data/imagenet/train', # Dataset root, when ann_file does not exist,

→˓ the category information is automatically obtained from the root folder
pipeline=train_pipeline), # train data pipeline

val=dict( # val data config
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt', # ann_file existes, the category␣

→˓information is obtained from file
pipeline=test_pipeline),

test=dict( # test data config
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline))

evaluation = dict( # The config to build the evaluation hook, refer to https://
→˓github.com/open-mmlab/mmdetection/blob/master/mmdet/core/evaluation/eval_hooks.py#L7␣
→˓for more details.

interval=1, # Evaluation interval
metric='accuracy') # Metrics used during evaluation

4.2.3 training schedule

Mainly include optimizer settings, optimizer hook settings, learning rate schedule and runner settings:

• optimizer: optimizer setting , support all optimizers in pytorch, refer to related mmcv documentation.

• optimizer_config: optimizer hook configuration file, such as setting gradient limit, refer to related mmcv
code.

• lr_config: Learning rate scheduler, supports “CosineAnnealing”, “Step”, “Cyclic”, etc. refer to related mmcv
documentation for more options.

• runner: For runner, please refer to mmcv for runner introduction document.

# he configuration file used to build the optimizer, support all optimizers in PyTorch.
optimizer = dict(type='SGD', # Optimizer type

lr=0.1, # Learning rate of optimizers, see detail usages of␣
→˓the parameters in the documentation of PyTorch

momentum=0.9, # Momentum
weight_decay=0.0001) # Weight decay of SGD

# Config used to build the optimizer hook, refer to https://github.com/open-mmlab/mmcv/
→˓blob/master/mmcv/runner/hooks/optimizer.py#L8 for implementation details.
optimizer_config = dict(grad_clip=None) # Most of the methods do not use gradient clip
# Learning rate scheduler config used to register LrUpdater hook
lr_config = dict(policy='step', # The policy of scheduler, also support␣
→˓CosineAnnealing, Cyclic, etc. Refer to details of supported LrUpdater from https://
→˓github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py#L9.

(continues on next page)
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step=[30, 60, 90]) # Steps to decay the learning rate
runner = dict(type='EpochBasedRunner', # Type of runner to use (i.e. IterBasedRunner␣
→˓or EpochBasedRunner)

max_epochs=100) # Runner that runs the workflow in total max_epochs. For␣
→˓IterBasedRunner use `max_iters`

4.2.4 runtime setting

This part mainly includes saving the checkpoint strategy, log configuration, training parameters, breakpoint weight
path, working directory, etc..

# Config to set the checkpoint hook, Refer to https://github.com/open-mmlab/mmcv/blob/
→˓master/mmcv/runner/hooks/checkpoint.py for implementation.
checkpoint_config = dict(interval=1) # The save interval is 1
# config to register logger hook
log_config = dict(

interval=100, # Interval to print the log
hooks=[

dict(type='TextLoggerHook'), # The Tensorboard logger is also supported
# dict(type='TensorboardLoggerHook')

])

dist_params = dict(backend='nccl') # Parameters to setup distributed training, the␣
→˓port can also be set.
log_level = 'INFO' # The output level of the log.
resume_from = None # Resume checkpoints from a given path, the training will␣
→˓be resumed from the epoch when the checkpoint's is saved.
workflow = [('train', 1)] # Workflow for runner. [('train', 1)] means there is only␣
→˓one workflow and the workflow named 'train' is executed once.
work_dir = 'work_dir' # Directory to save the model checkpoints and logs for␣
→˓the current experiments.

4.3 Inherit and Modify Config File

For easy understanding, we recommend contributors to inherit from existing methods.

For all configs under the same folder, it is recommended to have only one primitive config. All other configs should
inherit from the primitive config. In this way, the maximum of inheritance level is 3.

For example, if your config file is based on ResNet with some other modification, you can first inherit the basic ResNet
structure, dataset and other training setting by specifying _base_ ='./resnet50_8xb32_in1k.py' (The path rela-
tive to your config file), and then modify the necessary parameters in the config file. A more specific example, now we
want to use almost all configs in configs/resnet/resnet50_8xb32_in1k.py, but change the number of training
epochs from 100 to 300, modify when to decay the learning rate, and modify the dataset path, you can create a new
config file configs/resnet/resnet50_8xb32-300e_in1k.py with content as below:

_base_ = './resnet50_8xb32_in1k.py'

runner = dict(max_epochs=300)
lr_config = dict(step=[150, 200, 250])

(continues on next page)
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data = dict(
train=dict(data_prefix='mydata/imagenet/train'),
val=dict(data_prefix='mydata/imagenet/train', ),
test=dict(data_prefix='mydata/imagenet/train', )

)

4.3.1 Use intermediate variables in configs

Some intermediate variables are used in the configuration file. The intermediate variables make the configuration file
clearer and easier to modify.

For example, train_pipeline / test_pipeline is the intermediate variable of the data pipeline. We first need to de-
fine train_pipeline / test_pipeline, and then pass them to data. If you want to modify the size of the input image
during training and testing, you need to modify the intermediate variables of train_pipeline / test_pipeline.

img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)

train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', size=384, backend='pillow',),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])

]
test_pipeline = [

dict(type='LoadImageFromFile'),
dict(type='Resize', size=384, backend='pillow'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])

]
data = dict(

train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))

4.3.2 Ignore some fields in the base configs

Sometimes, you need to set _delete_=True to ignore some domain content in the basic configuration file. You can
refer to mmcv for more instructions.

The following is an example. If you want to use cosine schedule in the above ResNet50 case, just using inheritance
and directly modify it will report get unexcepected keyword'step' error, because the 'step' field of the basic
config in lr_config domain information is reserved, and you need to add _delete_ =True to ignore the content of
lr_config related fields in the basic configuration file:

_base_ = '../../configs/resnet/resnet50_8xb32_in1k.py'

(continues on next page)
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lr_config = dict(
_delete_=True,
policy='CosineAnnealing',
min_lr=0,
warmup='linear',
by_epoch=True,
warmup_iters=5,
warmup_ratio=0.1

)

4.3.3 Use some fields in the base configs

Sometimes, you may refer to some fields in the _base_ config, so as to avoid duplication of definitions. You can refer
to mmcv for some more instructions.

The following is an example of using auto augment in the training data preprocessing pipeline， refer to configs/
_base_/datasets/imagenet_bs64_autoaug.py. When defining train_pipeline, just add the definition file
name of auto augment to _base_, and then use {{_base_.auto_increasing_policies}} to reference the vari-
ables:

_base_ = ['./pipelines/auto_aug.py']

# dataset settings
dataset_type = 'ImageNet'
img_norm_cfg = dict(

mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [

dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', size=224),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='AutoAugment', policies={{_base_.auto_increasing_policies}}),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])

]
test_pipeline = [...]
data = dict(

samples_per_gpu=64,
workers_per_gpu=2,
train=dict(..., pipeline=train_pipeline),
val=dict(..., pipeline=test_pipeline))

evaluation = dict(interval=1, metric='accuracy')
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4.4 Modify config through script arguments

When users use the script “tools/train.py” or “tools/test.py” to submit tasks or use some other tools, they can directly
modify the content of the configuration file used by specifying the --cfg-options parameter.

• Update config keys of dict chains.

The config options can be specified following the order of the dict keys in the original config. For example,
--cfg-options model.backbone.norm_eval=False changes the all BN modules in model backbones to
train mode.

• Update keys inside a list of configs.

Some config dicts are composed as a list in your config. For example, the training pipeline
data.train.pipeline is normally a list e.g. [dict(type='LoadImageFromFile'),
dict(type='TopDownRandomFlip', flip_prob=0.5), ...]. If you want to change 'flip_prob=0.5'
to 'flip_prob=0.0' in the pipeline, you may specify --cfg-options data.train.pipeline.1.
flip_prob=0.0.

• Update values of list/tuples.

If the value to be updated is a list or a tuple. For example, the config file normally sets workflow=[('train',
1)]. If you want to change this key, you may specify --cfg-options workflow="[(train,1),(val,1)]".
Note that the quotation mark ” is necessary to support list/tuple data types, and that NO white space is allowed
inside the quotation marks in the specified value.

4.5 Import user-defined modules

Note: This part may only be used when using MMClassification as a third party library to build your own project, and
beginners can skip it.

After studying the follow-up tutorials ADDING NEW DATASET, CUSTOM DATA PIPELINES, ADDING NEW
MODULES. You may use MMClassification to complete your project and create new classes of datasets, models, data
enhancements, etc. in the project. In order to streamline the code, you can use MMClassification as a third-party
library, you just need to keep your own extra code and import your own custom module in the configuration files. For
examples, you may refer to OpenMMLab Algorithm Competition Project .

Add the following code to your own configuration files:

custom_imports = dict(
imports=['your_dataset_class',

'your_transforme_class',
'your_model_class',
'your_module_class'],

allow_failed_imports=False)

24 Chapter 4. Tutorial 1: Learn about Configs

https://mmclassification.readthedocs.io/en/latest/tutorials/new_dataset.html
https://mmclassification.readthedocs.io/en/latest/tutorials/data_pipeline.html
https://mmclassification.readthedocs.io/en/latest/tutorials/new_modules.html
https://mmclassification.readthedocs.io/en/latest/tutorials/new_modules.html
https://github.com/zhangrui-wolf/openmmlab-competition-2021


MMClassification Documentation, Release 0.25.0

4.6 FAQ

• None
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CHAPTER

FIVE

TUTORIAL 2: FINE-TUNE MODELS

Classification models pre-trained on the ImageNet dataset have been demonstrated to be effective for other datasets and
other downstream tasks. This tutorial provides instructions for users to use the models provided in the Model Zoo for
other datasets to obtain better performance.

There are two steps to fine-tune a model on a new dataset.

• Add support for the new dataset following Tutorial 3: Customize Dataset.

• Modify the configs as will be discussed in this tutorial.

Assume we have a ResNet-50 model pre-trained on the ImageNet-2012 dataset and want to take the fine-tuning on the
CIFAR-10 dataset, we need to modify five parts in the config.

5.1 Inherit base configs

At first, create a new config file configs/tutorial/resnet50_finetune_cifar.py to store our configs. Of
course, the path can be customized by yourself.

To reuse the common parts among different configs, we support inheriting configs from multiple existing configs.
To fine-tune a ResNet-50 model, the new config needs to inherit configs/_base_/models/resnet50.py to build
the basic structure of the model. To use the CIFAR-10 dataset, the new config can also simply inherit configs/
_base_/datasets/cifar10_bs16.py. For runtime settings such as training schedules, the new config needs to
inherit configs/_base_/default_runtime.py.

To inherit all above configs, put the following code at the config file.

_base_ = [
'../_base_/models/resnet50.py',
'../_base_/datasets/cifar10_bs16.py', '../_base_/default_runtime.py'

]

Besides, you can also choose to write the whole contents rather than use inheritance, like configs/lenet/
lenet5_mnist.py.
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5.2 Modify model

When fine-tuning a model, usually we want to load the pre-trained backbone weights and train a new classification
head.

To load the pre-trained backbone, we need to change the initialization config of the backbone and use Pretrained
initialization function. Besides, in the init_cfg, we use prefix='backbone' to tell the initialization function to
remove the prefix of keys in the checkpoint, for example, it will change backbone.conv1 to conv1. And here we use
an online checkpoint, it will be downloaded during training, you can also download the model manually and use a local
path.

And then we need to modify the head according to the class numbers of the new datasets by just changing num_classes
in the head.

model = dict(
backbone=dict(

init_cfg=dict(
type='Pretrained',
checkpoint='https://download.openmmlab.com/mmclassification/v0/resnet/

→˓resnet50_8xb32_in1k_20210831-ea4938fc.pth',
prefix='backbone',

)),
head=dict(num_classes=10),

)

Tip: Here we only need to set the part of configs we want to modify, because the inherited configs will be merged and
get the entire configs.

Sometimes, we want to freeze the first several layers’ parameters of the backbone, that will help the network to keep
ability to extract low-level information learnt from pre-trained model. In MMClassification, you can simply specify
how many layers to freeze by frozen_stages argument. For example, to freeze the first two layers’ parameters, just
use the following config:

model = dict(
backbone=dict(

frozen_stages=2,
init_cfg=dict(

type='Pretrained',
checkpoint='https://download.openmmlab.com/mmclassification/v0/resnet/

→˓resnet50_8xb32_in1k_20210831-ea4938fc.pth',
prefix='backbone',

)),
head=dict(num_classes=10),

)

Note: Not all backbones support the frozen_stages argument by now. Please check the docs to confirm if your
backbone supports it.
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5.3 Modify dataset

When fine-tuning on a new dataset, usually we need to modify some dataset configs. Here, we need to modify the
pipeline to resize the image from 32 to 224 to fit the input size of the model pre-trained on ImageNet, and some other
configs.

img_norm_cfg = dict(
mean=[125.307, 122.961, 113.8575],
std=[51.5865, 50.847, 51.255],
to_rgb=False,

)
train_pipeline = [

dict(type='RandomCrop', size=32, padding=4),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='Resize', size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label']),

]
test_pipeline = [

dict(type='Resize', size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),

]
data = dict(

train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline),

)

5.4 Modify training schedule

The fine-tuning hyper parameters vary from the default schedule. It usually requires smaller learning rate and less
training epochs.

# lr is set for a batch size of 128
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(policy='step', step=[15])
runner = dict(type='EpochBasedRunner', max_epochs=200)
log_config = dict(interval=100)
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5.5 Start Training

Now, we have finished the fine-tuning config file as following:

_base_ = [
'../_base_/models/resnet50.py',
'../_base_/datasets/cifar10_bs16.py', '../_base_/default_runtime.py'

]

# Model config
model = dict(

backbone=dict(
frozen_stages=2,
init_cfg=dict(

type='Pretrained',
checkpoint='https://download.openmmlab.com/mmclassification/v0/resnet/

→˓resnet50_8xb32_in1k_20210831-ea4938fc.pth',
prefix='backbone',

)),
head=dict(num_classes=10),

)

# Dataset config
img_norm_cfg = dict(

mean=[125.307, 122.961, 113.8575],
std=[51.5865, 50.847, 51.255],
to_rgb=False,

)
train_pipeline = [

dict(type='RandomCrop', size=32, padding=4),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='Resize', size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label']),

]
test_pipeline = [

dict(type='Resize', size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),

]
data = dict(

train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline),

)

# Training schedule config
# lr is set for a batch size of 128
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)

(continues on next page)
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# learning policy
lr_config = dict(policy='step', step=[15])
runner = dict(type='EpochBasedRunner', max_epochs=200)
log_config = dict(interval=100)

Here we use 8 GPUs on your computer to train the model with the following command:

bash tools/dist_train.sh configs/tutorial/resnet50_finetune_cifar.py 8

Also, you can use only one GPU to train the model with the following command:

python tools/train.py configs/tutorial/resnet50_finetune_cifar.py

But wait, an important config need to be changed if using one GPU. We need to change the dataset config as following:

data = dict(
samples_per_gpu=128,
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline),

)

It’s because our training schedule is for a batch size of 128. If using 8 GPUs, just use samples_per_gpu=16 config in
the base config file, and the total batch size will be 128. But if using one GPU, you need to change it to 128 manually
to match the training schedule.
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CHAPTER

SIX

TUTORIAL 3: CUSTOMIZE DATASET

We support many common public datasets for image classification task, you can find them in this page.

In this section, we demonstrate how to use your own dataset and use dataset wrapper.

6.1 Use your own dataset

6.1.1 Reorganize dataset to existing format

The simplest way to use your own dataset is to convert it to existing dataset formats.

For multi-class classification task, we recommend to use the format of CustomDataset.

The CustomDataset supports two kinds of format:

1. An annotation file is provided, and each line indicates a sample image.

The sample images can be organized in any structure, like:

train/
folder_1

xxx.png
xxy.png
...

123.png
nsdf3.png
...

And an annotation file records all paths of samples and corresponding category index. The first column is the
image path relative to the folder (in this example, train) and the second column is the index of category:

folder_1/xxx.png 0
folder_1/xxy.png 1
123.png 1
nsdf3.png 2
...

Note: The value of the category indices should fall in range [0, num_classes - 1].

2. The sample images are arranged in the special structure:
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train/
cat

xxx.png
xxy.png
...

xxz.png
bird

bird1.png
bird2.png
...

dog
123.png
nsdf3.png
...
asd932_.png

In this case, you don’t need provide annotation file, and all images in the directory cat will be recognized as
samples of cat.

Usually, we will split the whole dataset to three sub datasets: train, val and test for training, validation and test.
And every sub dataset should be organized as one of the above structures.

For example, the whole dataset is as below (using the first structure):

mmclassification
data

my_dataset
meta

train.txt
val.txt
test.txt

train
val
test

And in your config file, you can modify the data field as below:

...
dataset_type = 'CustomDataset'
classes = ['cat', 'bird', 'dog'] # The category names of your dataset

data = dict(
train=dict(

type=dataset_type,
data_prefix='data/my_dataset/train',
ann_file='data/my_dataset/meta/train.txt',
classes=classes,
pipeline=train_pipeline

),
val=dict(

type=dataset_type,
data_prefix='data/my_dataset/val',
ann_file='data/my_dataset/meta/val.txt',
classes=classes,

(continues on next page)
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pipeline=test_pipeline
),
test=dict(

type=dataset_type,
data_prefix='data/my_dataset/test',
ann_file='data/my_dataset/meta/test.txt',
classes=classes,
pipeline=test_pipeline

)
)
...

6.1.2 Create a new dataset class

You can write a new dataset class inherited from BaseDataset, and overwrite load_annotations(self), like CI-
FAR10 and CustomDataset.

Typically, this function returns a list, where each sample is a dict, containing necessary data information, e.g., img and
gt_label.

Assume we are going to implement a Filelist dataset, which takes filelists for both training and testing. The format
of annotation list is as follows:

000001.jpg 0
000002.jpg 1

We can create a new dataset in mmcls/datasets/filelist.py to load the data.

import mmcv
import numpy as np

from .builder import DATASETS
from .base_dataset import BaseDataset

@DATASETS.register_module()
class Filelist(BaseDataset):

def load_annotations(self):
assert isinstance(self.ann_file, str)

data_infos = []
with open(self.ann_file) as f:

samples = [x.strip().split(' ') for x in f.readlines()]
for filename, gt_label in samples:

info = {'img_prefix': self.data_prefix}
info['img_info'] = {'filename': filename}
info['gt_label'] = np.array(gt_label, dtype=np.int64)
data_infos.append(info)

return data_infos

And add this dataset class in mmcls/datasets/__init__.py
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from .base_dataset import BaseDataset
...
from .filelist import Filelist

__all__ = [
'BaseDataset', ... ,'Filelist'

]

Then in the config, to use Filelist you can modify the config as the following

train = dict(
type='Filelist',
ann_file='image_list.txt',
pipeline=train_pipeline

)

6.2 Use dataset wrapper

The dataset wrapper is a kind of class to change the behavior of dataset class, such as repeat the dataset or re-balance
the samples of different categories.

6.2.1 Repeat dataset

We use RepeatDataset as wrapper to repeat the dataset. For example, suppose the original dataset is Dataset_A, to
repeat it, the config looks like the following

data = dict(
train = dict(

type='RepeatDataset',
times=N,
dataset=dict( # This is the original config of Dataset_A

type='Dataset_A',
...
pipeline=train_pipeline

)
)
...

)

6.2.2 Class balanced dataset

We use ClassBalancedDataset as wrapper to repeat the dataset based on category frequency. The dataset to re-
peat needs to implement method get_cat_ids(idx) to support ClassBalancedDataset. For example, to repeat
Dataset_A with oversample_thr=1e-3, the config looks like the following

data = dict(
train = dict(

type='ClassBalancedDataset',
oversample_thr=1e-3,

(continues on next page)
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dataset=dict( # This is the original config of Dataset_A
type='Dataset_A',
...
pipeline=train_pipeline

)
)
...

)

You may refer to API reference for details.
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CHAPTER

SEVEN

TUTORIAL 4: CUSTOM DATA PIPELINES

7.1 Design of Data pipelines

Following typical conventions, we use Dataset and DataLoader for data loading with multiple workers. Indexing
Dataset returns a dict of data items corresponding to the arguments of models forward method.

The data preparation pipeline and the dataset is decomposed. Usually a dataset defines how to process the annotations
and a data pipeline defines all the steps to prepare a data dict. A pipeline consists of a sequence of operations. Each
operation takes a dict as input and also output a dict for the next transform.

The operations are categorized into data loading, pre-processing and formatting.

Here is an pipeline example for ResNet-50 training on ImageNet.

img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)

train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', size=224),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])

]
test_pipeline = [

dict(type='LoadImageFromFile'),
dict(type='Resize', size=256),
dict(type='CenterCrop', crop_size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])

]

For each operation, we list the related dict fields that are added/updated/removed. At the end of the pipeline, we use
Collect to only retain the necessary items for forward computation.
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7.1.1 Data loading

LoadImageFromFile

• add: img, img_shape, ori_shape

By default, LoadImageFromFile loads images from disk but it may lead to IO bottleneck for efficient small models.
Various backends are supported by mmcv to accelerate this process. For example, if the training machines have setup
memcached, we can revise the config as follows.

memcached_root = '/mnt/xxx/memcached_client/'
train_pipeline = [

dict(
type='LoadImageFromFile',
file_client_args=dict(

backend='memcached',
server_list_cfg=osp.join(memcached_root, 'server_list.conf'),
client_cfg=osp.join(memcached_root, 'client.conf'))),

]

More supported backends can be found in mmcv.fileio.FileClient.

7.1.2 Pre-processing

Resize

• add: scale, scale_idx, pad_shape, scale_factor, keep_ratio

• update: img, img_shape

RandomFlip

• add: flip, flip_direction

• update: img

RandomCrop

• update: img, pad_shape

Normalize

• add: img_norm_cfg

• update: img

7.1.3 Formatting

ToTensor

• update: specified by keys.

ImageToTensor

• update: specified by keys.

Collect

• remove: all other keys except for those specified by keys

For more information about other data transformation classes, please refer to Data Transformations
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7.2 Extend and use custom pipelines

1. Write a new pipeline in any file, e.g., my_pipeline.py, and place it in the folder mmcls/datasets/
pipelines/. The pipeline class needs to override the __call__ method which takes a dict as input and returns
a dict.

from mmcls.datasets import PIPELINES

@PIPELINES.register_module()
class MyTransform(object):

def __call__(self, results):
# apply transforms on results['img']
return results

2. Import the new class in mmcls/datasets/pipelines/__init__.py.

...
from .my_pipeline import MyTransform

__all__ = [
..., 'MyTransform'

]

3. Use it in config files.

img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)

train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', size=224),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='MyTransform'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])

]

7.3 Pipeline visualization

After designing data pipelines, you can use the visualization tools to view the performance.
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CHAPTER

EIGHT

TUTORIAL 5: ADDING NEW MODULES

8.1 Develop new components

We basically categorize model components into 3 types.

• backbone: usually an feature extraction network, e.g., ResNet, MobileNet.

• neck: the component between backbones and heads, e.g., GlobalAveragePooling.

• head: the component for specific tasks, e.g., classification or regression.

8.1.1 Add new backbones

Here we show how to develop new components with an example of ResNet_CIFAR. As the input size of CIFAR
is 32x32, this backbone replaces the kernel_size=7, stride=2 to kernel_size=3, stride=1 and remove the
MaxPooling after stem, to avoid forwarding small feature maps to residual blocks. It inherits from ResNet and only
modifies the stem layers.

1. Create a new file mmcls/models/backbones/resnet_cifar.py.

import torch.nn as nn

from ..builder import BACKBONES
from .resnet import ResNet

@BACKBONES.register_module()
class ResNet_CIFAR(ResNet):

"""ResNet backbone for CIFAR.

short description of the backbone

Args:
depth(int): Network depth, from {18, 34, 50, 101, 152}.
...

"""

def __init__(self, depth, deep_stem, **kwargs):
# call ResNet init
super(ResNet_CIFAR, self).__init__(depth, deep_stem=deep_stem, **kwargs)
# other specific initialization

(continues on next page)
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assert not self.deep_stem, 'ResNet_CIFAR do not support deep_stem'

def _make_stem_layer(self, in_channels, base_channels):
# override ResNet method to modify the network structure
self.conv1 = build_conv_layer(

self.conv_cfg,
in_channels,
base_channels,
kernel_size=3,
stride=1,
padding=1,
bias=False)

self.norm1_name, norm1 = build_norm_layer(
self.norm_cfg, base_channels, postfix=1)

self.add_module(self.norm1_name, norm1)
self.relu = nn.ReLU(inplace=True)

def forward(self, x): # should return a tuple
pass # implementation is ignored

def init_weights(self, pretrained=None):
pass # override ResNet init_weights if necessary

def train(self, mode=True):
pass # override ResNet train if necessary

2. Import the module in mmcls/models/backbones/__init__.py.

...
from .resnet_cifar import ResNet_CIFAR

__all__ = [
..., 'ResNet_CIFAR'

]

3. Use it in your config file.

model = dict(
...
backbone=dict(

type='ResNet_CIFAR',
depth=18,
other_arg=xxx),

...
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8.1.2 Add new necks

Here we take GlobalAveragePooling as an example. It is a very simple neck without any arguments. To add a new
neck, we mainly implement the forward function, which applies some operation on the output from backbone and
forward the results to head.

1. Create a new file in mmcls/models/necks/gap.py.

import torch.nn as nn

from ..builder import NECKS

@NECKS.register_module()
class GlobalAveragePooling(nn.Module):

def __init__(self):
self.gap = nn.AdaptiveAvgPool2d((1, 1))

def forward(self, inputs):
# we regard inputs as tensor for simplicity
outs = self.gap(inputs)
outs = outs.view(inputs.size(0), -1)
return outs

2. Import the module in mmcls/models/necks/__init__.py.

...
from .gap import GlobalAveragePooling

__all__ = [
..., 'GlobalAveragePooling'

]

3. Modify the config file.

model = dict(
neck=dict(type='GlobalAveragePooling'),

)

8.1.3 Add new heads

Here we show how to develop a new head with the example of LinearClsHead as the following. To implement a new
head, basically we need to implement forward_train, which takes the feature maps from necks or backbones as input
and compute loss based on ground-truth labels.

1. Create a new file in mmcls/models/heads/linear_head.py.

from ..builder import HEADS
from .cls_head import ClsHead

@HEADS.register_module()
class LinearClsHead(ClsHead):

(continues on next page)
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def __init__(self,
num_classes,
in_channels,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, )):

super(LinearClsHead, self).__init__(loss=loss, topk=topk)
self.in_channels = in_channels
self.num_classes = num_classes

if self.num_classes <= 0:
raise ValueError(

f'num_classes={num_classes} must be a positive integer')

self._init_layers()

def _init_layers(self):
self.fc = nn.Linear(self.in_channels, self.num_classes)

def init_weights(self):
normal_init(self.fc, mean=0, std=0.01, bias=0)

def forward_train(self, x, gt_label):
cls_score = self.fc(x)
losses = self.loss(cls_score, gt_label)
return losses

2. Import the module in mmcls/models/heads/__init__.py.

...
from .linear_head import LinearClsHead

__all__ = [
..., 'LinearClsHead'

]

3. Modify the config file.

Together with the added GlobalAveragePooling neck, an entire config for a model is as follows.

model = dict(
type='ImageClassifier',
backbone=dict(

type='ResNet',
depth=50,
num_stages=4,
out_indices=(3, ),
style='pytorch'),

neck=dict(type='GlobalAveragePooling'),
head=dict(

type='LinearClsHead',
num_classes=1000,
in_channels=2048,

(continues on next page)
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loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),

))

8.1.4 Add new loss

To add a new loss function, we mainly implement the forward function in the loss module. In addition, it is helpful
to leverage the decorator weighted_loss to weight the loss for each element. Assuming that we want to mimic a
probabilistic distribution generated from another classification model, we implement a L1Loss to fulfil the purpose as
below.

1. Create a new file in mmcls/models/losses/l1_loss.py.

import torch
import torch.nn as nn

from ..builder import LOSSES
from .utils import weighted_loss

@weighted_loss
def l1_loss(pred, target):

assert pred.size() == target.size() and target.numel() > 0
loss = torch.abs(pred - target)
return loss

@LOSSES.register_module()
class L1Loss(nn.Module):

def __init__(self, reduction='mean', loss_weight=1.0):
super(L1Loss, self).__init__()
self.reduction = reduction
self.loss_weight = loss_weight

def forward(self,
pred,
target,
weight=None,
avg_factor=None,
reduction_override=None):

assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (

reduction_override if reduction_override else self.reduction)
loss = self.loss_weight * l1_loss(

pred, target, weight, reduction=reduction, avg_factor=avg_factor)
return loss

2. Import the module in mmcls/models/losses/__init__.py.

...
from .l1_loss import L1Loss, l1_loss

(continues on next page)
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__all__ = [
..., 'L1Loss', 'l1_loss'

]

3. Modify loss field in the config.

loss=dict(type='L1Loss', loss_weight=1.0))
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CHAPTER

NINE

TUTORIAL 6: CUSTOMIZE SCHEDULE

In this tutorial, we will introduce some methods about how to construct optimizers, customize learning rate and mo-
mentum schedules, parameter-wise finely configuration, gradient clipping, gradient accumulation, and customize self-
implemented methods for the project.

• Customize optimizer supported by PyTorch

• Customize learning rate schedules

– Learning rate decay

– Warmup strategy

• Customize momentum schedules

• Parameter-wise finely configuration

• Gradient clipping and gradient accumulation

– Gradient clipping

– Gradient accumulation

• Customize self-implemented methods

– Customize self-implemented optimizer

– Customize optimizer constructor

9.1 Customize optimizer supported by PyTorch

We already support to use all the optimizers implemented by PyTorch, and to use and modify them, please change the
optimizer field of config files.

For example, if you want to use SGD, the modification could be as the following.

optimizer = dict(type='SGD', lr=0.0003, weight_decay=0.0001)

To modify the learning rate of the model, just modify the lr in the config of optimizer. You can also directly set other
arguments according to the API doc of PyTorch.

For example, if you want to use Adam with the setting like torch.optim.Adam(params, lr=0.001, betas=(0.9,
0.999), eps=1e-08, weight_decay=0, amsgrad=False) in PyTorch, the config should looks like.

optimizer = dict(type='Adam', lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0,␣
→˓amsgrad=False)
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9.2 Customize learning rate schedules

9.2.1 Learning rate decay

Learning rate decay is widely used to improve performance. And to use learning rate decay, please set the lr_confg
field in config files.

For example, we use step policy as the default learning rate decay policy of ResNet, and the config is:

lr_config = dict(policy='step', step=[100, 150])

Then during training, the program will call StepLRHook periodically to update the learning rate.

We also support many other learning rate schedules here, such as CosineAnnealing and Poly schedule. Here are
some examples

• ConsineAnnealing schedule:

lr_config = dict(
policy='CosineAnnealing',
warmup='linear',
warmup_iters=1000,
warmup_ratio=1.0 / 10,
min_lr_ratio=1e-5)

• Poly schedule:

lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)

9.2.2 Warmup strategy

In the early stage, training is easy to be volatile, and warmup is a technique to reduce volatility. With warmup, the
learning rate will increase gradually from a minor value to the expected value.

In MMClassification, we use lr_config to configure the warmup strategy, the main parameters are as follows：

• warmup: The warmup curve type. Please choose one from ‘constant’, ‘linear’, ‘exp’ and None, and None means
disable warmup.

• warmup_by_epoch : if warmup by epoch or not, default to be True, if set to be False, warmup by iter.

• warmup_iters : the number of warm-up iterations, when warmup_by_epoch=True, the unit is epoch; when
warmup_by_epoch=False, the unit is the number of iterations (iter).

• warmup_ratio : warm-up initial learning rate will calculate as lr = lr * warmup_ratio。

Here are some examples

1. linear & warmup by iter

lr_config = dict(
policy='CosineAnnealing',
by_epoch=False,
min_lr_ratio=1e-2,
warmup='linear',
warmup_ratio=1e-3,

(continues on next page)
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warmup_iters=20 * 1252,
warmup_by_epoch=False)

2. exp & warmup by epoch

lr_config = dict(
policy='CosineAnnealing',
min_lr=0,
warmup='exp',
warmup_iters=5,
warmup_ratio=0.1,
warmup_by_epoch=True)

Tip: After completing your configuration file，you could use learning rate visualization tool to draw the corresponding
learning rate adjustment curve.

9.3 Customize momentum schedules

We support the momentum scheduler to modify the model’s momentum according to learning rate, which could make
the model converge in a faster way.

Momentum scheduler is usually used with LR scheduler, for example, the following config is used to accelerate con-
vergence. For more details, please refer to the implementation of CyclicLrUpdater and CyclicMomentumUpdater.

Here is an example

lr_config = dict(
policy='cyclic',
target_ratio=(10, 1e-4),
cyclic_times=1,
step_ratio_up=0.4,

)
momentum_config = dict(

policy='cyclic',
target_ratio=(0.85 / 0.95, 1),
cyclic_times=1,
step_ratio_up=0.4,

)

9.4 Parameter-wise finely configuration

Some models may have some parameter-specific settings for optimization, for example, no weight decay to the Batch-
Norm layer or using different learning rates for different network layers. To finely configuration them, we can use the
paramwise_cfg option in optimizer.

We provide some examples here and more usages refer to DefaultOptimizerConstructor.

• Using specified options
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The DefaultOptimizerConstructor provides options including bias_lr_mult, bias_decay_mult,
norm_decay_mult, dwconv_decay_mult, dcn_offset_lr_mult and bypass_duplicate to configure spe-
cial optimizer behaviors of bias, normalization, depth-wise convolution, deformable convolution and duplicated
parameter. E.g:

1. No weight decay to the BatchNorm layer

optimizer = dict(
type='SGD',
lr=0.8,
weight_decay=1e-4,
paramwise_cfg=dict(norm_decay_mult=0.))

• Using custom_keys dict

MMClassification can use custom_keys to specify different parameters to use different learning rates or weight
decays, for example:

1. No weight decay for specific parameters

paramwise_cfg = dict(
custom_keys={

'backbone.cls_token': dict(decay_mult=0.0),
'backbone.pos_embed': dict(decay_mult=0.0)

})

optimizer = dict(
type='SGD',
lr=0.8,
weight_decay=1e-4,
paramwise_cfg=paramwise_cfg)

2. Using a smaller learning rate and a weight decay for the backbone layers

optimizer = dict(
type='SGD',
lr=0.8,
weight_decay=1e-4,
# 'lr' for backbone and 'weight_decay' are 0.1 * lr and 0.9 * weight_decay
paramwise_cfg=dict(

custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=0.9)}))
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9.5 Gradient clipping and gradient accumulation

Besides the basic function of PyTorch optimizers, we also provide some enhancement functions, such as gradient
clipping, gradient accumulation, etc., refer to MMCV.

9.5.1 Gradient clipping

During the training process, the loss function may get close to a cliffy region and cause gradient explosion. And gradient
clipping is helpful to stabilize the training process. More introduction can be found in this page.

Currently we support grad_clip option in optimizer_config, and the arguments refer to PyTorch Documentation.

Here is an example:

optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# norm_type: type of the used p-norm, here norm_type is 2.

When inheriting from base and modifying configs, if grad_clip=None in base, _delete_=True is needed. For more
details about _delete_ you can refer to TUTORIAL 1: LEARN ABOUT CONFIGS. For example,

_base_ = [./_base_/schedules/imagenet_bs256_coslr.py]

optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2), _delete_=True, type=
→˓'OptimizerHook')
# you can ignore type if type is 'OptimizerHook', otherwise you must add "type=
→˓'xxxxxOptimizerHook'" here

9.5.2 Gradient accumulation

When computing resources are lacking, the batch size can only be set to a small value, which may affect the performance
of models. Gradient accumulation can be used to solve this problem.

Here is an example:

data = dict(samples_per_gpu=64)
optimizer_config = dict(type="GradientCumulativeOptimizerHook", cumulative_iters=4)

Indicates that during training, back-propagation is performed every 4 iters. And the above is equivalent to:

data = dict(samples_per_gpu=256)
optimizer_config = dict(type="OptimizerHook")

Note: When the optimizer hook type is not specified in optimizer_config, OptimizerHook is used by default.
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9.6 Customize self-implemented methods

In academic research and industrial practice, it may be necessary to use optimization methods not implemented by
MMClassification, and you can add them through the following methods.

Note: This part will modify the MMClassification source code or add code to the MMClassification framework,
beginners can skip it.

9.6.1 Customize self-implemented optimizer

1. Define a new optimizer

A customized optimizer could be defined as below.

Assume you want to add an optimizer named MyOptimizer, which has arguments a, b, and c. You need to create
a new directory named mmcls/core/optimizer. And then implement the new optimizer in a file, e.g., in mmcls/
core/optimizer/my_optimizer.py:

from mmcv.runner import OPTIMIZERS
from torch.optim import Optimizer

@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):

def __init__(self, a, b, c):

2. Add the optimizer to registry

To find the above module defined above, this module should be imported into the main namespace at first. There are
two ways to achieve it.

• Modify mmcls/core/optimizer/__init__.py to import it into optimizer package, and then modify
mmcls/core/__init__.py to import the new optimizer package.

Create the mmcls/core/optimizer folder and the mmcls/core/optimizer/__init__.py file if they don’t
exist. The newly defined module should be imported in mmcls/core/optimizer/__init__.py and mmcls/
core/__init__.py so that the registry will find the new module and add it:

# In mmcls/core/optimizer/__init__.py
from .my_optimizer import MyOptimizer # MyOptimizer maybe other class name

__all__ = ['MyOptimizer']

# In mmcls/core/__init__.py
...
from .optimizer import * # noqa: F401, F403

• Use custom_imports in the config to manually import it
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custom_imports = dict(imports=['mmcls.core.optimizer.my_optimizer'], allow_failed_
→˓imports=False)

The module mmcls.core.optimizer.my_optimizer will be imported at the beginning of the program and the class
MyOptimizer is then automatically registered. Note that only the package containing the class MyOptimizer should
be imported. mmcls.core.optimizer.my_optimizer.MyOptimizer cannot be imported directly.

3. Specify the optimizer in the config file

Then you can use MyOptimizer in optimizer field of config files. In the configs, the optimizers are defined by the
field optimizer like the following:

optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)

To use your own optimizer, the field can be changed to

optimizer = dict(type='MyOptimizer', a=a_value, b=b_value, c=c_value)

9.6.2 Customize optimizer constructor

Some models may have some parameter-specific settings for optimization, e.g. weight decay for BatchNorm layers.

Although our DefaultOptimizerConstructor is powerful, it may still not cover your need. If that, you can do those
fine-grained parameter tuning through customizing optimizer constructor.

from mmcv.runner.optimizer import OPTIMIZER_BUILDERS

@OPTIMIZER_BUILDERS.register_module()
class MyOptimizerConstructor:

def __init__(self, optimizer_cfg, paramwise_cfg=None):
pass

def __call__(self, model):
... # Construct your optimzier here.
return my_optimizer

The default optimizer constructor is implemented here, which could also serve as a template for new optimizer con-
structor.
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CHAPTER

TEN

TUTORIAL 7: CUSTOMIZE RUNTIME SETTINGS

In this tutorial, we will introduce some methods about how to customize workflow and hooks when running your own
settings for the project.

• Customize Workflow

• Hooks

– Default training hooks

– Use other implemented hooks

– Customize self-implemented hooks

• FAQ

10.1 Customize Workflow

Workflow is a list of (phase, duration) to specify the running order and duration. The meaning of “duration” depends
on the runner’s type.

For example, we use epoch-based runner by default, and the “duration” means how many epochs the phase to be
executed in a cycle. Usually, we only want to execute training phase, just use the following config.

workflow = [('train', 1)]

Sometimes we may want to check some metrics (e.g. loss, accuracy) about the model on the validate set. In such case,
we can set the workflow as

[('train', 1), ('val', 1)]

so that 1 epoch for training and 1 epoch for validation will be run iteratively.

By default, we recommend using EvalHook to do evaluation after the training epoch, but you can still use valworkflow
as an alternative.

Note:

1. The parameters of model will not be updated during the val epoch.

2. Keyword max_epochs in the config only controls the number of training epochs and will not affect the validation
workflow.

3. Workflows [('train', 1), ('val', 1)] and [('train', 1)] will not change the behavior of EvalHook
because EvalHook is called by after_train_epoch and validation workflow only affect hooks that are called
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through after_val_epoch. Therefore, the only difference between [('train', 1), ('val', 1)] and
[('train', 1)] is that the runner will calculate losses on the validation set after each training epoch.

10.2 Hooks

The hook mechanism is widely used in the OpenMMLab open-source algorithm library. Combined with the Runner,
the entire life cycle of the training process can be managed easily. You can learn more about the hook through related
article.

Hooks only work after being registered into the runner. At present, hooks are mainly divided into two categories:

• default training hooks

The default training hooks are registered by the runner by default. Generally, they are hooks for some basic functions,
and have a certain priority, you don’t need to modify the priority.

• custom hooks

The custom hooks are registered through custom_hooks. Generally, they are hooks with enhanced functions. The
priority needs to be specified in the configuration file. If you do not specify the priority of the hook, it will be set to
‘NORMAL’ by default.

Priority list

Level Value
HIGHEST 0
VERY_HIGH 10
HIGH 30
ABOVE_NORMAL 40
NORMAL(default) 50
BELOW_NORMAL 60
LOW 70
VERY_LOW 90
LOWEST 100

The priority determines the execution order of the hooks. Before training, the log will print out the execution order of
the hooks at each stage to facilitate debugging.

10.2.1 default training hooks

Some common hooks are not registered through custom_hooks, they are

Hooks Priority
LrUpdaterHook VERY_HIGH (10)
MomentumUpdaterHook HIGH (30)
OptimizerHook ABOVE_NORMAL (40)
CheckpointHook NORMAL (50)
IterTimerHook LOW (70)
EvalHook LOW (70)
LoggerHook(s) VERY_LOW (90)
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OptimizerHook, MomentumUpdaterHook and LrUpdaterHook have been introduced in sehedule strategy.
IterTimerHook is used to record elapsed time and does not support modification.

Here we reveal how to customize CheckpointHook, LoggerHooks, and EvalHook.

CheckpointHook

The MMCV runner will use checkpoint_config to initialize CheckpointHook.

checkpoint_config = dict(interval=1)

We could set max_keep_ckpts to save only a small number of checkpoints or decide whether to store state dict of
optimizer by save_optimizer. More details of the arguments are here

LoggerHooks

The log_config wraps multiple logger hooks and enables to set intervals. Now MMCV supports
TextLoggerHook, WandbLoggerHook, MlflowLoggerHook, NeptuneLoggerHook, DvcliveLoggerHook and
TensorboardLoggerHook. The detailed usages can be found in the doc.

log_config = dict(
interval=50,
hooks=[

dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')

])

EvalHook

The config of evaluation will be used to initialize the EvalHook.

The EvalHook has some reserved keys, such as interval, save_best and start, and the other arguments such as
metrics will be passed to the dataset.evaluate()

evaluation = dict(interval=1, metric='accuracy', metric_options={'topk': (1, )})

You can save the model weight when the best verification result is obtained by modifying the parameter save_best:

# "auto" means automatically select the metrics to compare.
# You can also use a specific key like "accuracy_top-1".
evaluation = dict(interval=1, save_best="auto", metric='accuracy', metric_options={'topk
→˓': (1, )})

When running some large experiments, you can skip the validation step at the beginning of training by modifying the
parameter start as below:

evaluation = dict(interval=1, start=200, metric='accuracy', metric_options={'topk': (1,␣
→˓)})

This indicates that, before the 200th epoch, evaluations would not be executed. Since the 200th epoch, evaluations
would be executed after the training process.
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Note: In the default configuration files of MMClassification, the evaluation field is generally placed in the datasets
configs.

10.2.2 Use other implemented hooks

Some hooks have been already implemented in MMCV and MMClassification, they are:

• EMAHook

• SyncBuffersHook

• EmptyCacheHook

• ProfilerHook

• . . . . . .

If the hook is already implemented in MMCV, you can directly modify the config to use the hook as below

mmcv_hooks = [
dict(type='MMCVHook', a=a_value, b=b_value, priority='NORMAL')

]

such as using EMAHook, interval is 100 iters:

custom_hooks = [
dict(type='EMAHook', interval=100, priority='HIGH')

]

10.3 Customize self-implemented hooks

10.3.1 1. Implement a new hook

Here we give an example of creating a new hook in MMClassification and using it in training.

from mmcv.runner import HOOKS, Hook

@HOOKS.register_module()
class MyHook(Hook):

def __init__(self, a, b):
pass

def before_run(self, runner):
pass

def after_run(self, runner):
pass

def before_epoch(self, runner):
(continues on next page)
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(continued from previous page)

pass

def after_epoch(self, runner):
pass

def before_iter(self, runner):
pass

def after_iter(self, runner):
pass

Depending on the functionality of the hook, the users need to specify what the hook will do at each stage of the training
in before_run, after_run, before_epoch, after_epoch, before_iter, and after_iter.

10.3.2 2. Register the new hook

Then we need to make MyHook imported. Assuming the file is in mmcls/core/utils/my_hook.py there are two
ways to do that:

• Modify mmcls/core/utils/__init__.py to import it.

The newly defined module should be imported in mmcls/core/utils/__init__.py so that the registry will
find the new module and add it:

from .my_hook import MyHook

• Use custom_imports in the config to manually import it

custom_imports = dict(imports=['mmcls.core.utils.my_hook'], allow_failed_imports=False)

10.3.3 3. Modify the config

custom_hooks = [
dict(type='MyHook', a=a_value, b=b_value)

]

You can also set the priority of the hook as below:

custom_hooks = [
dict(type='MyHook', a=a_value, b=b_value, priority='ABOVE_NORMAL')

]

By default, the hook’s priority is set as NORMAL during registration.
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10.4 FAQ

10.4.1 1. resume_from and load_from and init_cfg.Pretrained

• load_from : only imports model weights, which is mainly used to load pre-trained or trained models;

• resume_from : not only import model weights, but also optimizer information, current epoch information,
mainly used to continue training from the checkpoint.

• init_cfg.Pretrained : Load weights during weight initialization, and you can specify which module to load.
This is usually used when fine-tuning a model, refer to Tutorial 2: Fine-tune Models.
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ELEVEN

MODEL ZOO SUMMARY

• Number of papers: 34

– ALGORITHM: 34

• Number of checkpoints: 224

– [ALGORITHM] Conformer: Local Features Coupling Global Representations for Visual Recognition (4
ckpts)

– [ALGORITHM] Patches Are All You Need? (3 ckpts)

– [ALGORITHM] A ConvNet for the 2020s (13 ckpts)

– [ALGORITHM] CSPNet: A New Backbone that can Enhance Learning Capability of CNN (3 ckpts)

– [ALGORITHM] Residual Attention: A Simple but Effective Method for Multi-Label Recognition (1 ckpts)

– [ALGORITHM] Training data-efficient image transformers & distillation through attention (9 ckpts)

– [ALGORITHM] Densely Connected Convolutional Networks (4 ckpts)

– [ALGORITHM] EfficientFormer: Vision Transformers at MobileNet Speed (3 ckpts)

– [ALGORITHM] Rethinking Model Scaling for Convolutional Neural Networks (23 ckpts)

– [ALGORITHM] HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions (9
ckpts)

– [ALGORITHM] Deep High-Resolution Representation Learning for Visual Recognition (9 ckpts)

– [ALGORITHM] MLP-Mixer: An all-MLP Architecture for Vision (2 ckpts)

– [ALGORITHM] MobileNetV2: Inverted Residuals and Linear Bottlenecks (1 ckpts)

– [ALGORITHM] Searching for MobileNetV3 (2 ckpts)

– [ALGORITHM] MViTv2: Improved Multiscale Vision Transformers for Classification and Detection (4
ckpts)

– [ALGORITHM] MetaFormer is Actually What You Need for Vision (5 ckpts)

– [ALGORITHM] Designing Network Design Spaces (16 ckpts)

– [ALGORITHM] RepMLP: Re-parameterizing Convolutions into Fully-connected Layers forImage Recog-
nition (2 ckpts)

– [ALGORITHM] Repvgg: Making vgg-style convnets great again (12 ckpts)

– [ALGORITHM] Res2Net: A New Multi-scale Backbone Architecture (3 ckpts)

– [ALGORITHM] Deep Residual Learning for Image Recognition (26 ckpts)

– [ALGORITHM] Aggregated Residual Transformations for Deep Neural Networks (4 ckpts)
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– [ALGORITHM] Squeeze-and-Excitation Networks (2 ckpts)

– [ALGORITHM] ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices (1
ckpts)

– [ALGORITHM] Shufflenet v2: Practical guidelines for efficient cnn architecture design (1 ckpts)

– [ALGORITHM] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (14 ckpts)

– [ALGORITHM] Swin Transformer V2: Scaling Up Capacity and Resolution (12 ckpts)

– [ALGORITHM] Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet (3 ckpts)

– [ALGORITHM] Transformer in Transformer (1 ckpts)

– [ALGORITHM] Twins: Revisiting the Design of Spatial Attention in Vision Transformers (6 ckpts)

– [ALGORITHM] Visual Attention Network (8 ckpts)

– [ALGORITHM] Very Deep Convolutional Networks for Large-Scale Image Recognition (8 ckpts)

– [ALGORITHM] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (7 ckpts)

– [ALGORITHM] Wide Residual Networks (3 ckpts)
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MODEL ZOO

12.1 ImageNet

ImageNet has multiple versions, but the most commonly used one is ILSVRC 2012. The ResNet family models below
are trained by standard data augmentations, i.e., RandomResizedCrop, RandomHorizontalFlip and Normalize.

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
VGG-11 132.86 7.63 68.75 88.87 config model | log
VGG-13 133.05 11.34 70.02 89.46 config model | log
VGG-16 138.36 15.5 71.62 90.49 config model | log
VGG-19 143.67 19.67 72.41 90.80 config model | log
VGG-11-BN 132.87 7.64 70.75 90.12 config model | log
VGG-13-BN 133.05 11.36 72.15 90.71 config model | log
VGG-16-BN 138.37 15.53 73.72 91.68 config model | log
VGG-19-BN 143.68 19.7 74.70 92.24 config model | log
RepVGG-A0* 9.11（train) | 8.31 (deploy) 1.52 (train) | 1.36 (deploy) 72.41 90.50 config (train) | config (deploy) model
RepVGG-A1* 14.09 (train) | 12.79 (deploy) 2.64 (train) | 2.37 (deploy) 74.47 91.85 config (train) | config (deploy) model
RepVGG-A2* 28.21 (train) | 25.5 (deploy) 5.7 (train) | 5.12 (deploy) 76.48 93.01 config (train) | config (deploy) model
RepVGG-B0* 15.82 (train) | 14.34 (deploy) 3.42 (train) | 3.06 (deploy) 75.14 92.42 config (train) | config (deploy) model
RepVGG-B1* 57.42 (train) | 51.83 (deploy) 13.16 (train) | 11.82 (deploy) 78.37 94.11 config (train) | config (deploy) model
RepVGG-B1g2* 45.78 (train) | 41.36 (deploy) 9.82 (train) | 8.82 (deploy) 77.79 93.88 config (train) | config (deploy) model
RepVGG-B1g4* 39.97 (train) | 36.13 (deploy) 8.15 (train) | 7.32 (deploy) 77.58 93.84 config (train) | config (deploy) model
RepVGG-B2* 89.02 (train) | 80.32 (deploy) 20.46 (train) | 18.39 (deploy) 78.78 94.42 config (train) | config (deploy) model
RepVGG-B2g4* 61.76 (train) | 55.78 (deploy) 12.63 (train) | 11.34 (deploy) 79.38 94.68 config (train) | config (deploy) model
RepVGG-B3* 123.09 (train) | 110.96 (deploy) 29.17 (train) | 26.22 (deploy) 80.52 95.26 config (train) | config (deploy) model
RepVGG-B3g4* 83.83 (train) | 75.63 (deploy) 17.9 (train) | 16.08 (deploy) 80.22 95.10 config (train) | config (deploy) model
RepVGG-D2se* 133.33 (train) | 120.39 (deploy) 36.56 (train) | 32.85 (deploy) 81.81 95.94 config (train) | config (deploy) model
ResNet-18 11.69 1.82 70.07 89.44 config model | log
ResNet-34 21.8 3.68 73.85 91.53 config model | log
ResNet-50 (rsb-a1) 25.56 4.12 80.12 94.78 config model | log
ResNet-101 44.55 7.85 78.18 94.03 config model | log
ResNet-152 60.19 11.58 78.63 94.16 config model | log
Res2Net-50-14w-8s* 25.06 4.22 78.14 93.85 config model
Res2Net-50-26w-8s* 48.40 8.39 79.20 94.36 config model
Res2Net-101-26w-4s* 45.21 8.12 79.19 94.44 config model
ResNeSt-50* 27.48 5.41 81.13 95.59 config model
ResNeSt-101* 48.28 10.27 82.32 96.24 config model
ResNeSt-200* 70.2 17.53 82.41 96.22 config model
ResNeSt-269* 110.93 22.58 82.70 96.28 config model

continues on next page
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https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-A0_4xb64-coslr-120e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-A0_deploy_4xb64-coslr-120e_in1k.py
https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A0_3rdparty_4xb64-coslr-120e_in1k_20210909-883ab98c.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-A1_4xb64-coslr-120e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-A1_deploy_4xb64-coslr-120e_in1k.py
https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A1_3rdparty_4xb64-coslr-120e_in1k_20210909-24003a24.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-A2_4xb64-coslr-120e_in1k.py
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https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B0_4xb64-coslr-120e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B0_deploy_4xb64-coslr-120e_in1k.py
https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B0_3rdparty_4xb64-coslr-120e_in1k_20210909-446375f4.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B1_4xb64-coslr-120e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B1_deploy_4xb64-coslr-120e_in1k.py
https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1_3rdparty_4xb64-coslr-120e_in1k_20210909-750cdf67.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B1g2_4xb64-coslr-120e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B1g2_deploy_4xb64-coslr-120e_in1k.py
https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1g2_3rdparty_4xb64-coslr-120e_in1k_20210909-344f6422.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B1g4_4xb64-coslr-120e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B1g4_deploy_4xb64-coslr-120e_in1k.py
https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1g4_3rdparty_4xb64-coslr-120e_in1k_20210909-d4c1a642.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B2_4xb64-coslr-120e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B2_deploy_4xb64-coslr-120e_in1k.py
https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B2_3rdparty_4xb64-coslr-120e_in1k_20210909-bd6b937c.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B2g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B2g4_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B2g4_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-7b7955f0.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B3_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B3_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B3_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-dda968bf.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B3g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B3g4_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B3g4_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-4e54846a.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-D2se_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-D2se_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-D2se_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-cf3139b7.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet18_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_batch256_imagenet_20200708-34ab8f90.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_batch256_imagenet_20200708-34ab8f90.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet34_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_batch256_imagenet_20200708-32ffb4f7.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_batch256_imagenet_20200708-32ffb4f7.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb256-rsb-a1-600e_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a1-600e_in1k_20211228-20e21305.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a1-600e_in1k_20211228-20e21305.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet101_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_batch256_imagenet_20200708-753f3608.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_batch256_imagenet_20200708-753f3608.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet152_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_batch256_imagenet_20200708-ec25b1f9.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_batch256_imagenet_20200708-ec25b1f9.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/res2net/res2net50-w14-s8_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/res2net/res2net50-w14-s8_3rdparty_8xb32_in1k_20210927-bc967bf1.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/res2net/res2net50-w26-s8_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/res2net/res2net50-w26-s8_3rdparty_8xb32_in1k_20210927-f547a94b.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/res2net/res2net101-w26-s4_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/res2net/res2net101-w26-s4_3rdparty_8xb32_in1k_20210927-870b6c36.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnest/resnest50_32xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnest/resnest50_imagenet_converted-1ebf0afe.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnest/resnest101_32xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnest/resnest101_imagenet_converted-032caa52.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnest/resnest200_64xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnest/resnest200_imagenet_converted-581a60f2.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnest/resnest269_64xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnest/resnest269_imagenet_converted-59930960.pth


MMClassification Documentation, Release 0.25.0

Table 1 – continued from previous page
Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
ResNetV1D-50 25.58 4.36 77.54 93.57 config model | log
ResNetV1D-101 44.57 8.09 78.93 94.48 config model | log
ResNetV1D-152 60.21 11.82 79.41 94.7 config model | log
ResNeXt-32x4d-50 25.03 4.27 77.90 93.66 config model | log
ResNeXt-32x4d-101 44.18 8.03 78.71 94.12 config model | log
ResNeXt-32x8d-101 88.79 16.5 79.23 94.58 config model | log
ResNeXt-32x4d-152 59.95 11.8 78.93 94.41 config model | log
SE-ResNet-50 28.09 4.13 77.74 93.84 config model | log
SE-ResNet-101 49.33 7.86 78.26 94.07 config model | log
RegNetX-400MF 5.16 0.41 72.56 90.78 config model | log
RegNetX-800MF 7.26 0.81 74.76 92.32 config model | log
RegNetX-1.6GF 9.19 1.63 76.84 93.31 config model | log
RegNetX-3.2GF 15.3 3.21 78.09 94.08 config model | log
RegNetX-4.0GF 22.12 4.0 78.60 94.17 config model | log
RegNetX-6.4GF 26.21 6.51 79.38 94.65 config model | log
RegNetX-8.0GF 39.57 8.03 79.12 94.51 config model | log
RegNetX-12GF 46.11 12.15 79.67 95.03 config model | log
ShuffleNetV1 1.0x (group=3) 1.87 0.146 68.13 87.81 config model | log
ShuffleNetV2 1.0x 2.28 0.149 69.55 88.92 config model | log
MobileNet V2 3.5 0.319 71.86 90.42 config model | log
ViT-B/16* 86.86 33.03 85.43 97.77 config model
ViT-B/32* 88.3 8.56 84.01 97.08 config model
ViT-L/16* 304.72 116.68 85.63 97.63 config model
Swin-Transformer tiny 28.29 4.36 81.18 95.61 config model | log
Swin-Transformer small 49.61 8.52 83.02 96.29 config model | log
Swin-Transformer base 87.77 15.14 83.36 96.44 config model | log
Transformer in Transformer small* 23.76 3.36 81.52 95.73 config model
T2T-ViT_t-14 21.47 4.34 81.83 95.84 config model | log
T2T-ViT_t-19 39.08 7.80 82.63 96.18 config model | log
T2T-ViT_t-24 64.00 12.69 82.71 96.09 config model | log
Mixer-B/16* 59.88 12.61 76.68 92.25 config model
Mixer-L/16* 208.2 44.57 72.34 88.02 config model
DeiT-tiny 5.72 1.08 74.50 92.24 config model | log
DeiT-tiny distilled* 5.72 1.08 74.51 91.90 config model
DeiT-small 22.05 4.24 80.69 95.06 config model | log
DeiT-small distilled* 22.05 4.24 81.17 95.40 config model
DeiT-base 86.57 16.86 81.76 95.81 config model | log
DeiT-base distilled* 86.57 16.86 83.33 96.49 config model
DeiT-base 384px* 86.86 49.37 83.04 96.31 config model
DeiT-base distilled 384px* 86.86 49.37 85.55 97.35 config model
Conformer-tiny-p16* 23.52 4.90 81.31 95.60 config model
Conformer-small-p32* 38.85 7.09 81.96 96.02 config model
Conformer-small-p16* 37.67 10.31 83.32 96.46 config model
Conformer-base-p16* 83.29 22.89 83.82 96.59 config model
PCPVT-small* 24.11 3.67 81.14 95.69 config model
PCPVT-base* 43.83 6.45 82.66 96.26 config model
PCPVT-large* 60.99 9.51 83.09 96.59 config model
SVT-small* 24.06 2.82 81.77 95.57 config model
SVT-base* 56.07 8.35 83.13 96.29 config model
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https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnetv1d50_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d50_b32x8_imagenet_20210531-db14775a.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d50_b32x8_imagenet_20210531-db14775a.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnetv1d101_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d101_b32x8_imagenet_20210531-6e13bcd3.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d101_b32x8_imagenet_20210531-6e13bcd3.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnetv1d152_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d152_b32x8_imagenet_20210531-278cf22a.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d152_b32x8_imagenet_20210531-278cf22a.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext50-32x4d_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnext/resnext50_32x4d_b32x8_imagenet_20210429-56066e27.pth
https://download.openmmlab.com/mmclassification/v0/resnext/resnext50_32x4d_b32x8_imagenet_20210429-56066e27.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext101-32x4d_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x4d_b32x8_imagenet_20210506-e0fa3dd5.pth
https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x4d_b32x8_imagenet_20210506-e0fa3dd5.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext101-32x8d_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x8d_b32x8_imagenet_20210506-23a247d5.pth
https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x8d_b32x8_imagenet_20210506-23a247d5.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext152-32x4d_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnext/resnext152_32x4d_b32x8_imagenet_20210524-927787be.pth
https://download.openmmlab.com/mmclassification/v0/resnext/resnext152_32x4d_b32x8_imagenet_20210524-927787be.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/seresnet/seresnet50_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet50_batch256_imagenet_20200804-ae206104.pth
https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet50_batch256_imagenet_20200708-657b3c36.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/seresnet/seresnet101_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet101_batch256_imagenet_20200804-ba5b51d4.pth
https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet101_batch256_imagenet_20200708-038a4d04.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-400mf_8xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-400mf_8xb128_in1k_20211213-89bfc226.pth
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-400mf_8xb128_in1k_20211208_143316.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-800mf_8xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-800mf_8xb128_in1k_20211213-222b0f11.pth
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-800mf_8xb128_in1k_20211207_143037.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-1.6gf_8xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-1.6gf_8xb128_in1k_20211213-d1b89758.pth
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-1.6gf_8xb128_in1k_20211208_143018.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-3.2gf_8xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-3.2gf_8xb64_in1k_20211213-1fdd82ae.pth
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-3.2gf_8xb64_in1k_20211208_142720.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-4.0gf_8xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-4.0gf_8xb64_in1k_20211213-efed675c.pth
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-4.0gf_8xb64_in1k_20211207_150431.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-6.4gf_8xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-6.4gf_8xb64_in1k_20211215-5c6089da.pth
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-6.4gf_8xb64_in1k_20211213_172748.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-8.0gf_8xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-8.0gf_8xb64_in1k_20211213-9a9fcc76.pth
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-8.0gf_8xb64_in1k_20211208_103250.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-12gf_8xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-12gf_8xb64_in1k_20211213-5df8c2f8.pth
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-12gf_8xb64_in1k_20211208_143713.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/shufflenet_v1/shufflenet-v1-1x_16xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/shufflenet_v1/shufflenet_v1_batch1024_imagenet_20200804-5d6cec73.pth
https://download.openmmlab.com/mmclassification/v0/shufflenet_v1/shufflenet_v1_batch1024_imagenet_20200804-5d6cec73.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/shufflenet_v2/shufflenet-v2-1x_16xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/shufflenet_v2/shufflenet_v2_batch1024_imagenet_20200812-5bf4721e.pth
https://download.openmmlab.com/mmclassification/v0/shufflenet_v2/shufflenet_v2_batch1024_imagenet_20200804-8860eec9.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/mobilenet_v2/mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.pth
https://download.openmmlab.com/mmclassification/v0/mobilenet_v2/mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/vision_transformer/vit-base-p16_ft-64xb64_in1k-384.py
https://download.openmmlab.com/mmclassification/v0/vit/finetune/vit-base-p16_in21k-pre-3rdparty_ft-64xb64_in1k-384_20210928-98e8652b.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/vision_transformer/vit-base-p32_ft-64xb64_in1k-384.py
https://download.openmmlab.com/mmclassification/v0/vit/finetune/vit-base-p32_in21k-pre-3rdparty_ft-64xb64_in1k-384_20210928-9cea8599.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/vision_transformer/vit-large-p16_ft-64xb64_in1k-384.py
https://download.openmmlab.com/mmclassification/v0/vit/finetune/vit-large-p16_in21k-pre-3rdparty_ft-64xb64_in1k-384_20210928-b20ba619.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin-tiny_16xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_tiny_224_b16x64_300e_imagenet_20210616_090925-66df6be6.pth
https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_tiny_224_b16x64_300e_imagenet_20210616_090925.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin-small_16xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_small_224_b16x64_300e_imagenet_20210615_110219-7f9d988b.pth
https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_small_224_b16x64_300e_imagenet_20210615_110219.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin_base_224_b16x64_300e_imagenet.py
https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_base_224_b16x64_300e_imagenet_20210616_190742-93230b0d.pth
https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_base_224_b16x64_300e_imagenet_20210616_190742.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/tnt/tnt-s-p16_16xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/tnt/tnt-small-p16_3rdparty_in1k_20210903-c56ee7df.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/t2t_vit/t2t-vit-t-14_8xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/t2t-vit/t2t-vit-t-14_8xb64_in1k_20211220-f7378dd5.pth
https://download.openmmlab.com/mmclassification/v0/t2t-vit/t2t-vit-t-14_8xb64_in1k_20211220-f7378dd5.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/t2t_vit/t2t-vit-t-19_8xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/t2t-vit/t2t-vit-t-19_8xb64_in1k_20211214-7f5e3aaf.pth
https://download.openmmlab.com/mmclassification/v0/t2t-vit/t2t-vit-t-19_8xb64_in1k_20211214-7f5e3aaf.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/t2t_vit/t2t-vit-t-24_8xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/t2t-vit/t2t-vit-t-24_8xb64_in1k_20211214-b2a68ae3.pth
https://download.openmmlab.com/mmclassification/v0/t2t-vit/t2t-vit-t-24_8xb64_in1k_20211214-b2a68ae3.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/mlp_mixer/mlp-mixer-base-p16_64xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/mlp-mixer/mixer-base-p16_3rdparty_64xb64_in1k_20211124-1377e3e0.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/mlp_mixer/mlp-mixer-large-p16_64xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/mlp-mixer/mixer-large-p16_3rdparty_64xb64_in1k_20211124-5a2519d2.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/deit/deit-tiny_pt-4xb256_in1k.py
https://download.openmmlab.com/mmclassification/v0/deit/deit-tiny_pt-4xb256_in1k_20220218-13b382a0.pth
https://download.openmmlab.com/mmclassification/v0/deit/deit-tiny_pt-4xb256_in1k_20220218-13b382a0.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/deit/deit-tiny-distilled_pt-4xb256_in1k.py
https://download.openmmlab.com/mmclassification/v0/deit/deit-tiny-distilled_3rdparty_pt-4xb256_in1k_20211216-c429839a.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/deit/deit-small_pt-4xb256_in1k.py
https://download.openmmlab.com/mmclassification/v0/deit/deit-small_pt-4xb256_in1k_20220218-9425b9bb.pth
https://download.openmmlab.com/mmclassification/v0/deit/deit-small_pt-4xb256_in1k_20220218-9425b9bb.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/deit/deit-small-distilled_pt-4xb256_in1k.py
https://download.openmmlab.com/mmclassification/v0/deit/deit-small-distilled_3rdparty_pt-4xb256_in1k_20211216-4de1d725.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/deit/deit-base_pt-16xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/deit/deit-base_pt-16xb64_in1k_20220216-db63c16c.pth
https://download.openmmlab.com/mmclassification/v0/deit/deit-base_pt-16xb64_in1k_20220216-db63c16c.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/deit/deit-base-distilled_pt-16xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/deit/deit-base-distilled_3rdparty_pt-16xb64_in1k_20211216-42891296.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/deit/deit-base_ft-16xb32_in1k-384px.py
https://download.openmmlab.com/mmclassification/v0/deit/deit-base_3rdparty_ft-16xb32_in1k-384px_20211124-822d02f2.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/deit/deit-base-distilled_ft-16xb32_in1k-384px.py
https://download.openmmlab.com/mmclassification/v0/deit/deit-base-distilled_3rdparty_ft-16xb32_in1k-384px_20211216-e48d6000.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/conformer/conformer-tiny-p16_8xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/conformer/conformer-tiny-p16_3rdparty_8xb128_in1k_20211206-f6860372.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/conformer/conformer-small-p32_8xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/conformer/conformer-small-p32_8xb128_in1k_20211206-947a0816.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/conformer/conformer-small-p16_8xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/conformer/conformer-small-p16_3rdparty_8xb128_in1k_20211206-3065dcf5.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/conformer/conformer-base-p16_8xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/conformer/conformer-base-p16_3rdparty_8xb128_in1k_20211206-bfdf8637.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/twins/twins-pcpvt-small_8xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/twins/twins-pcpvt-small_3rdparty_8xb128_in1k_20220126-ef23c132.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/twins/twins-pcpvt-base_8xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/twins/twins-pcpvt-base_3rdparty_8xb128_in1k_20220126-f8c4b0d5.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/twins/twins-pcpvt-large_16xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/twins/twins-pcpvt-large_3rdparty_16xb64_in1k_20220126-c1ef8d80.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/twins/twins-svt-small_8xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/twins/twins-svt-small_3rdparty_8xb128_in1k_20220126-8fe5205b.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/twins/twins-svt-base_8xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/twins/twins-svt-base_3rdparty_8xb128_in1k_20220126-e31cc8e9.pth
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Table 1 – continued from previous page
Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
SVT-large* 99.27 14.82 83.60 96.50 config model
EfficientNet-B0* 5.29 0.02 76.74 93.17 config model
EfficientNet-B0 (AA)* 5.29 0.02 77.26 93.41 config model
EfficientNet-B0 (AA + AdvProp)* 5.29 0.02 77.53 93.61 config model
EfficientNet-B1* 7.79 0.03 78.68 94.28 config model
EfficientNet-B1 (AA)* 7.79 0.03 79.20 94.42 config model
EfficientNet-B1 (AA + AdvProp)* 7.79 0.03 79.52 94.43 config model
EfficientNet-B2* 9.11 0.03 79.64 94.80 config model
EfficientNet-B2 (AA)* 9.11 0.03 80.21 94.96 config model
EfficientNet-B2 (AA + AdvProp)* 9.11 0.03 80.45 95.07 config model
EfficientNet-B3* 12.23 0.06 81.01 95.34 config model
EfficientNet-B3 (AA)* 12.23 0.06 81.58 95.67 config model
EfficientNet-B3 (AA + AdvProp)* 12.23 0.06 81.81 95.69 config model
EfficientNet-B4* 19.34 0.12 82.57 96.09 config model
EfficientNet-B4 (AA)* 19.34 0.12 82.95 96.26 config model
EfficientNet-B4 (AA + AdvProp)* 19.34 0.12 83.25 96.44 config model
EfficientNet-B5* 30.39 0.24 83.18 96.47 config model
EfficientNet-B5 (AA)* 30.39 0.24 83.82 96.76 config model
EfficientNet-B5 (AA + AdvProp)* 30.39 0.24 84.21 96.98 config model
EfficientNet-B6 (AA)* 43.04 0.41 84.05 96.82 config model
EfficientNet-B6 (AA + AdvProp)* 43.04 0.41 84.74 97.14 config model
EfficientNet-B7 (AA)* 66.35 0.72 84.38 96.88 config model
EfficientNet-B7 (AA + AdvProp)* 66.35 0.72 85.14 97.23 config model
EfficientNet-B8 (AA + AdvProp)* 87.41 1.09 85.38 97.28 config model
ConvNeXt-T* 28.59 4.46 82.05 95.86 config model
ConvNeXt-S* 50.22 8.69 83.13 96.44 config model
ConvNeXt-B* 88.59 15.36 83.85 96.74 config model
ConvNeXt-B* 88.59 15.36 85.81 97.86 config model
ConvNeXt-L* 197.77 34.37 84.30 96.89 config model
ConvNeXt-L* 197.77 34.37 86.61 98.04 config model
ConvNeXt-XL* 350.20 60.93 86.97 98.20 config model
HRNet-W18* 21.30 4.33 76.75 93.44 config model
HRNet-W30* 37.71 8.17 78.19 94.22 config model
HRNet-W32* 41.23 8.99 78.44 94.19 config model
HRNet-W40* 57.55 12.77 78.94 94.47 config model
HRNet-W44* 67.06 14.96 78.88 94.37 config model
HRNet-W48* 77.47 17.36 79.32 94.52 config model
HRNet-W64* 128.06 29.00 79.46 94.65 config model
HRNet-W18 (ssld)* 21.30 4.33 81.06 95.70 config model
HRNet-W48 (ssld)* 77.47 17.36 83.63 96.79 config model
WRN-50* 68.88 11.44 81.45 95.53 config model
WRN-101* 126.89 22.81 78.84 94.28 config model
CSPDarkNet50* 27.64 5.04 80.05 95.07 config model
CSPResNet50* 21.62 3.48 79.55 94.68 config model
CSPResNeXt50* 20.57 3.11 79.96 94.96 config model
DenseNet121* 7.98 2.88 74.96 92.21 config model
DenseNet169* 14.15 3.42 76.08 93.11 config model
DenseNet201* 20.01 4.37 77.32 93.64 config model
DenseNet161* 28.68 7.82 77.61 93.83 config model

continues on next page
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https://github.com/open-mmlab/mmclassification/blob/master/configs/twins/twins-svt-large_16xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/twins/twins-svt-large_3rdparty_16xb64_in1k_20220126-4817645f.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b0_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b0_3rdparty_8xb32_in1k_20220119-a7e2a0b1.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b0_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b0_3rdparty_8xb32-aa_in1k_20220119-8d939117.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b0_8xb32-01norm_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b0_3rdparty_8xb32-aa-advprop_in1k_20220119-26434485.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b1_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b1_3rdparty_8xb32_in1k_20220119-002556d9.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b1_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b1_3rdparty_8xb32-aa_in1k_20220119-619d8ae3.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b1_8xb32-01norm_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b1_3rdparty_8xb32-aa-advprop_in1k_20220119-5715267d.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b2_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b2_3rdparty_8xb32_in1k_20220119-ea374a30.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b2_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b2_3rdparty_8xb32-aa_in1k_20220119-dd61e80b.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b2_8xb32-01norm_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b2_3rdparty_8xb32-aa-advprop_in1k_20220119-1655338a.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b3_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b3_3rdparty_8xb32_in1k_20220119-4b4d7487.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b3_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b3_3rdparty_8xb32-aa_in1k_20220119-5b4887a0.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b3_8xb32-01norm_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b3_3rdparty_8xb32-aa-advprop_in1k_20220119-53b41118.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b4_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b4_3rdparty_8xb32_in1k_20220119-81fd4077.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b4_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b4_3rdparty_8xb32-aa_in1k_20220119-45b8bd2b.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b4_8xb32-01norm_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b4_3rdparty_8xb32-aa-advprop_in1k_20220119-38c2238c.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b5_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b5_3rdparty_8xb32_in1k_20220119-e9814430.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b5_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b5_3rdparty_8xb32-aa_in1k_20220119-2cab8b78.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b5_8xb32-01norm_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b5_3rdparty_8xb32-aa-advprop_in1k_20220119-f57a895a.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b6_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b6_3rdparty_8xb32-aa_in1k_20220119-45b03310.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b6_8xb32-01norm_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b6_3rdparty_8xb32-aa-advprop_in1k_20220119-bfe3485e.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b7_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b7_3rdparty_8xb32-aa_in1k_20220119-bf03951c.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b7_8xb32-01norm_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b7_3rdparty_8xb32-aa-advprop_in1k_20220119-c6dbff10.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b8_8xb32-01norm_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b8_3rdparty_8xb32-aa-advprop_in1k_20220119-297ce1b7.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/convnext/convnext-tiny_32xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/convnext/convnext-tiny_3rdparty_32xb128_in1k_20220124-18abde00.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/convnext/convnext-small_32xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/convnext/convnext-small_3rdparty_32xb128_in1k_20220124-d39b5192.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/convnext/convnext-base_32xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/convnext/convnext-base_3rdparty_32xb128_in1k_20220124-d0915162.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/convnext/convnext-base_32xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/convnext/convnext-base_in21k-pre-3rdparty_32xb128_in1k_20220124-eb2d6ada.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/convnext/convnext-large_64xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/convnext/convnext-large_3rdparty_64xb64_in1k_20220124-f8a0ded0.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/convnext/convnext-large_64xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/convnext/convnext-large_in21k-pre-3rdparty_64xb64_in1k_20220124-2412403d.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/convnext/convnext-xlarge_64xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/convnext/convnext-xlarge_in21k-pre-3rdparty_64xb64_in1k_20220124-76b6863d.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w18_4xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/hrnet/hrnet-w18_3rdparty_8xb32_in1k_20220120-0c10b180.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w30_4xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/hrnet/hrnet-w30_3rdparty_8xb32_in1k_20220120-8aa3832f.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w32_4xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/hrnet/hrnet-w32_3rdparty_8xb32_in1k_20220120-c394f1ab.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w40_4xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/hrnet/hrnet-w40_3rdparty_8xb32_in1k_20220120-9a2dbfc5.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w44_4xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/hrnet/hrnet-w44_3rdparty_8xb32_in1k_20220120-35d07f73.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w48_4xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/hrnet/hrnet-w48_3rdparty_8xb32_in1k_20220120-e555ef50.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w64_4xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/hrnet/hrnet-w64_3rdparty_8xb32_in1k_20220120-19126642.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w18_4xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/hrnet/hrnet-w18_3rdparty_8xb32-ssld_in1k_20220120-455f69ea.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w48_4xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/hrnet/hrnet-w48_3rdparty_8xb32-ssld_in1k_20220120-d0459c38.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/wrn/wide-resnet50_timm_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/wrn/wide-resnet50_3rdparty-timm_8xb32_in1k_20220304-83ae4399.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/wrn/wide-resnet101_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/wrn/wide-resnet101_3rdparty_8xb32_in1k_20220304-8d5f9d61.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/cspnet/cspdarknet50_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/cspnet/cspdarknet50_3rdparty_8xb32_in1k_20220329-bd275287.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/cspnet/cspresnet50_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/cspnet/cspresnet50_3rdparty_8xb32_in1k_20220329-dd6dddfb.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/cspnet/cspresnext50_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/cspnet/cspresnext50_3rdparty_8xb32_in1k_20220329-2cc84d21.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/densenet/densenet121_4xb256_in1k.py
https://download.openmmlab.com/mmclassification/v0/densenet/densenet121_4xb256_in1k_20220426-07450f99.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/densenet/densenet169_4xb256_in1k.py
https://download.openmmlab.com/mmclassification/v0/densenet/densenet169_4xb256_in1k_20220426-a2889902.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/densenet/densenet201_4xb256_in1k.py
https://download.openmmlab.com/mmclassification/v0/densenet/densenet201_4xb256_in1k_20220426-05cae4ef.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/densenet/densenet161_4xb256_in1k.py
https://download.openmmlab.com/mmclassification/v0/densenet/densenet161_4xb256_in1k_20220426-ee6a80a9.pth


MMClassification Documentation, Release 0.25.0

Table 1 – continued from previous page
Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
VAN-T* 4.11 0.88 75.41 93.02 config model
VAN-S* 13.86 2.52 81.01 95.63 config model
VAN-B* 26.58 5.03 82.80 96.21 config model
VAN-L* 44.77 8.99 83.86 96.73 config model
MViTv2-tiny* 24.17 4.70 82.33 96.15 config model
MViTv2-small* 34.87 7.00 83.63 96.51 config model
MViTv2-base* 51.47 10.20 84.34 96.86 config model
MViTv2-large* 217.99 42.10 85.25 97.14 config model
EfficientFormer-l1* 12.19 1.30 80.46 94.99 config model
EfficientFormer-l3* 31.41 3.93 82.45 96.18 config model
EfficientFormer-l7* 82.23 10.16 83.40 96.60 config model

Models with * are converted from other repos, others are trained by ourselves.

12.2 CIFAR10

Model Params(M) Flops(G) Top-1 (%) Config Download
ResNet-18-b16x8 11.17 0.56 94.82 config

ResNet-34-b16x8 21.28 1.16 95.34 config

ResNet-50-b16x8 23.52 1.31 95.55 config

ResNet-101-b16x8 42.51 2.52 95.58 config

ResNet-152-b16x8 58.16 3.74 95.76 config
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https://github.com/open-mmlab/mmclassification/blob/master/configs/van/van-tiny_8xb128_in1k.py
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https://github.com/open-mmlab/mmclassification/blob/master/configs/mvit/mvitv2-base_8xb256_in1k.py
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https://github.com/open-mmlab/mmclassification/blob/master/configs/mvit/mvitv2-large_8xb256_in1k.py
https://download.openmmlab.com/mmclassification/v0/mvit/mvitv2-large_3rdparty_in1k_20220722-2b57b983.pth
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https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientformer/efficientformer-l3_8xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientformer/efficientformer-l3_3rdparty_in1k_20220803-dde1c8c5.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientformer/efficientformer-l7_8xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientformer/efficientformer-l7_3rdparty_in1k_20220803-41a552bb.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet18_8xb16_cifar10.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet34_8xb16_cifar10.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb16_cifar10.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet101_8xb16_cifar10.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet152_8xb16_cifar10.py


CHAPTER

THIRTEEN

CONFORMER

Conformer: Local Features Coupling Global Representations for Visual Recognition

13.1 Abstract

Within Convolutional Neural Network (CNN), the convolution operations are good at extracting local features but
experience difficulty to capture global representations. Within visual transformer, the cascaded self-attention modules
can capture long-distance feature dependencies but unfortunately deteriorate local feature details. In this paper, we
propose a hybrid network structure, termed Conformer, to take advantage of convolutional operations and self-attention
mechanisms for enhanced representation learning. Conformer roots in the Feature Coupling Unit (FCU), which fuses
local features and global representations under different resolutions in an interactive fashion. Conformer adopts a
concurrent structure so that local features and global representations are retained to the maximum extent. Experiments
show that Conformer, under the comparable parameter complexity, outperforms the visual transformer (DeiT-B) by
2.3% on ImageNet. On MSCOCO, it outperforms ResNet-101 by 3.7% and 3.6% mAPs for object detection and
instance segmentation, respectively, demonstrating the great potential to be a general backbone network.

13.2 Results and models

13.2.1 ImageNet-1k

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
Conformer-tiny-p16* 23.52 4.90 81.31 95.60 config model
Conformer-small-p32* 38.85 7.09 81.96 96.02 config model
Conformer-small-p16* 37.67 10.31 83.32 96.46 config model
Conformer-base-p16* 83.29 22.89 83.82 96.59 config model

Models with * are converted from the official repo. The config files of these models are only for validation. We don’t
ensure these config files’ training accuracy and welcome you to contribute your reproduction results.
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https://arxiv.org/abs/2105.03889
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https://github.com/pengzhiliang/Conformer
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CHAPTER

FOURTEEN

CONVMIXER

Patches Are All You Need?

14.1 Abstract

Although convolutional networks have been the dominant architecture for vision tasks for many years, recent experi-
ments have shown that Transformer-based models, most notably the Vision Transformer (ViT), may exceed their perfor-
mance in some settings. However, due to the quadratic runtime of the self-attention layers in Transformers, ViTs require
the use of patch embeddings, which group together small regions of the image into single input features, in order to be
applied to larger image sizes. This raises a question: Is the performance of ViTs due to the inherently-more-powerful
Transformer architecture, or is it at least partly due to using patches as the input representation? In this paper, we
present some evidence for the latter: specifically, we propose the ConvMixer, an extremely simple model that is similar
in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on patches as input, separates the
mixing of spatial and channel dimensions, and maintains equal size and resolution throughout the network. In contrast,
however, the ConvMixer uses only standard convolutions to achieve the mixing steps. Despite its simplicity, we show
that the ConvMixer outperforms the ViT, MLP-Mixer, and some of their variants for similar parameter counts and data
set sizes, in addition to outperforming classical vision models such as the ResNet.

14.2 Results and models

14.2.1 ImageNet-1k

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
ConvMixer-768/32* 21.11 19.62 80.16 95.08 config model
ConvMixer-1024/20* 24.38 5.55 76.94 93.36 config model
ConvMixer-1536/20* 51.63 48.71 81.37 95.61 config model

Models with * are converted from the official repo. The config files of these models are only for inference. We don’t
ensure these config files’ training accuracy and welcome you to contribute your reproduction results.
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https://arxiv.org/abs/2201.09792
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CHAPTER

FIFTEEN

CONVNEXT

A ConvNet for the 2020s

15.1 Abstract

The “Roaring 20s” of visual recognition began with the introduction of Vision Transformers (ViTs), which quickly
superseded ConvNets as the state-of-the-art image classification model. A vanilla ViT, on the other hand, faces dif-
ficulties when applied to general computer vision tasks such as object detection and semantic segmentation. It is the
hierarchical Transformers (e.g., Swin Transformers) that reintroduced several ConvNet priors, making Transformers
practically viable as a generic vision backbone and demonstrating remarkable performance on a wide variety of vision
tasks. However, the effectiveness of such hybrid approaches is still largely credited to the intrinsic superiority of Trans-
formers, rather than the inherent inductive biases of convolutions. In this work, we reexamine the design spaces and
test the limits of what a pure ConvNet can achieve. We gradually “modernize” a standard ResNet toward the design of
a vision Transformer, and discover several key components that contribute to the performance difference along the way.
The outcome of this exploration is a family of pure ConvNet models dubbed ConvNeXt. Constructed entirely from
standard ConvNet modules, ConvNeXts compete favorably with Transformers in terms of accuracy and scalability,
achieving 87.8% ImageNet top-1 accuracy and outperforming Swin Transformers on COCO detection and ADE20K
segmentation, while maintaining the simplicity and efficiency of standard ConvNets.

15.2 Results and models

15.2.1 ImageNet-1k

Model Pretrain Params(M) Flops(G) Top-1 (%) Top-5 (%) Con-
fig

Down-
load

ConvNeXt-T* From scratch 28.59 4.46 82.05 95.86 config model
ConvNeXt-S* From scratch 50.22 8.69 83.13 96.44 config model
ConvNeXt-B* From scratch 88.59 15.36 83.85 96.74 config model
ConvNeXt-B* ImageNet-

21k
88.59 15.36 85.81 97.86 config model

ConvNeXt-L* From scratch 197.77 34.37 84.30 96.89 config model
ConvNeXt-L* ImageNet-

21k
197.77 34.37 86.61 98.04 config model

ConvNeXt-XL* ImageNet-
21k

350.20 60.93 86.97 98.20 config model
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Models with * are converted from the official repo. The config files of these models are only for inference. We don’t
ensure these config files’ training accuracy and welcome you to contribute your reproduction results.

15.2.2 Pre-trained Models

The pre-trained models on ImageNet-1k or ImageNet-21k are used to fine-tune on the downstream tasks.

Model Training Data Params(M) Flops(G) Download
ConvNeXt-T* ImageNet-1k 28.59 4.46 model
ConvNeXt-S* ImageNet-1k 50.22 8.69 model
ConvNeXt-B* ImageNet-1k 88.59 15.36 model
ConvNeXt-B* ImageNet-21k 88.59 15.36 model
ConvNeXt-L* ImageNet-21k 197.77 34.37 model
ConvNeXt-XL* ImageNet-21k 350.20 60.93 model

Models with * are converted from the official repo.

15.3 Citation
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CHAPTER

SIXTEEN

CSPNET

CSPNet: A New Backbone that can Enhance Learning Capability of CNN

16.1 Abstract

Neural networks have enabled state-of-the-art approaches to achieve incredible results on computer vision tasks such
as object detection. However, such success greatly relies on costly computation resources, which hinders people with
cheap devices from appreciating the advanced technology. In this paper, we propose Cross Stage Partial Network (CSP-
Net) to mitigate the problem that previous works require heavy inference computations from the network architecture
perspective. We attribute the problem to the duplicate gradient information within network optimization. The pro-
posed networks respect the variability of the gradients by integrating feature maps from the beginning and the end of
a network stage, which, in our experiments, reduces computations by 20% with equivalent or even superior accuracy
on the ImageNet dataset, and significantly outperforms state-of-the-art approaches in terms of AP50 on the MS COCO
object detection dataset. The CSPNet is easy to implement and general enough to cope with architectures based on
ResNet, ResNeXt, and DenseNet. Source code is at this https URL.

16.2 Results and models

16.2.1 ImageNet-1k

Model Pretrain Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
CSPDarkNet50* From scratch 27.64 5.04 80.05 95.07 config model
CSPResNet50* From scratch 21.62 3.48 79.55 94.68 config model
CSPResNeXt50* From scratch 20.57 3.11 79.96 94.96 config model

Models with * are converted from the timm repo. The config files of these models are only for inference. We don’t
ensure these config files’ training accuracy and welcome you to contribute your reproduction results.
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CHAPTER

SEVENTEEN

CSRA

Residual Attention: A Simple but Effective Method for Multi-Label Recognition

17.1 Abstract

Multi-label image recognition is a challenging computer vision task of practical use. Progresses in this area, however,
are often characterized by complicated methods, heavy computations, and lack of intuitive explanations. To effectively
capture different spatial regions occupied by objects from different categories, we propose an embarrassingly simple
module, named class-specific residual attention (CSRA). CSRA generates class-specific features for every category
by proposing a simple spatial attention score, and then combines it with the class-agnostic average pooling feature.
CSRA achieves state-of-the-art results on multilabel recognition, and at the same time is much simpler than them.
Furthermore, with only 4 lines of code, CSRA also leads to consistent improvement across many diverse pretrained
models and datasets without any extra training. CSRA is both easy to implement and light in computations, which also
enjoys intuitive explanations and visualizations.

17.2 Results and models

17.2.1 VOC2007

Model Pretrain Params(M) Flops(G) mAP OF1
(%)

CF1
(%)

Con-
fig

Down-
load

Resnet101-
CSRA

ImageNet-
1k

23.55 4.12 94.98 90.80 89.16 config model |
log
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CHAPTER

EIGHTEEN

DEIT

Training data-efficient image transformers & distillation through attention

18.1 Abstract

Recently, neural networks purely based on attention were shown to address image understanding tasks such as image
classification. However, these visual transformers are pre-trained with hundreds of millions of images using an expen-
sive infrastructure, thereby limiting their adoption. In this work, we produce a competitive convolution-free transformer
by training on Imagenet only. We train them on a single computer in less than 3 days. Our reference vision transformer
(86M parameters) achieves top-1 accuracy of 83.1% (single-crop evaluation) on ImageNet with no external data. More
importantly, we introduce a teacher-student strategy specific to transformers. It relies on a distillation token ensuring
that the student learns from the teacher through attention. We show the interest of this token-based distillation, espe-
cially when using a convnet as a teacher. This leads us to report results competitive with convnets for both Imagenet
(where we obtain up to 85.2% accuracy) and when transferring to other tasks. We share our code and models.

18.2 Results and models

18.2.1 ImageNet-1k

The teacher of the distilled version DeiT is RegNetY-16GF.
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Model Pretrain Params(M) Flops(G) Top-1
(%)

Top-5
(%)

Con-
fig

Down-
load

DeiT-tiny From
scratch

5.72 1.08 74.50 92.24 config model |
log

DeiT-tiny distilled* From
scratch

5.72 1.08 74.51 91.90 config model

DeiT-small From
scratch

22.05 4.24 80.69 95.06 config model |
log

DeiT-small distilled* From
scratch

22.05 4.24 81.17 95.40 config model

DeiT-base From
scratch

86.57 16.86 81.76 95.81 config model |
log

DeiT-base* From
scratch

86.57 16.86 81.79 95.59 config model

DeiT-base distilled* From
scratch

86.57 16.86 83.33 96.49 config model

DeiT-base 384px* ImageNet-
1k

86.86 49.37 83.04 96.31 config model

DeiT-base distilled
384px*

ImageNet-
1k

86.86 49.37 85.55 97.35 config model

Models with * are converted from the official repo. The config files of these models are only for validation. We don’t
ensure these config files’ training accuracy and welcome you to contribute your reproduction results.

Warning: MMClassification doesn’t support training the distilled version DeiT. And we provide distilled version
checkpoints for inference only.

18.3 Citation
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https://download.openmmlab.com/mmclassification/v0/deit/deit-base_3rdparty_pt-16xb64_in1k_20211124-6f40c188.pth
https://github.com/open-mmlab/mmclassification/tree/master/configs/deit/deit-base-distilled_pt-16xb64_in1k.py
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https://download.openmmlab.com/mmclassification/v0/deit/deit-base-distilled_3rdparty_ft-16xb32_in1k-384px_20211216-e48d6000.pth
https://github.com/facebookresearch/deit


CHAPTER

NINETEEN

DENSENET

Densely Connected Convolutional Networks

19.1 Abstract

Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train
if they contain shorter connections between layers close to the input and those close to the output. In this paper, we
embrace this observation and introduce the Dense Convolutional Network (DenseNet), which connects each layer to
every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connec-
tions - one between each layer and its subsequent layer - our network has L(L+1)/2 direct connections. For each layer,
the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subse-
quent layers. DenseNets have several compelling advantages: they alleviate the vanishing-gradient problem, strengthen
feature propagation, encourage feature reuse, and substantially reduce the number of parameters. We evaluate our pro-
posed architecture on four highly competitive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and
ImageNet). DenseNets obtain significant improvements over the state-of-the-art on most of them, whilst requiring less
computation to achieve high performance.

19.2 Results and models

19.2.1 ImageNet-1k

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
DenseNet121* 7.98 2.88 74.96 92.21 config model
DenseNet169* 14.15 3.42 76.08 93.11 config model
DenseNet201* 20.01 4.37 77.32 93.64 config model
DenseNet161* 28.68 7.82 77.61 93.83 config model

Models with * are converted from pytorch, guided by original repo. The config files of these models are only for
inference. We don’t ensure these config files’ training accuracy and welcome you to contribute your reproduction
results.
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https://arxiv.org/abs/1608.06993
https://github.com/open-mmlab/mmclassification/blob/master/configs/densenet/densenet121_4xb256_in1k.py
https://download.openmmlab.com/mmclassification/v0/densenet/densenet121_4xb256_in1k_20220426-07450f99.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/densenet/densenet169_4xb256_in1k.py
https://download.openmmlab.com/mmclassification/v0/densenet/densenet169_4xb256_in1k_20220426-a2889902.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/densenet/densenet201_4xb256_in1k.py
https://download.openmmlab.com/mmclassification/v0/densenet/densenet201_4xb256_in1k_20220426-05cae4ef.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/densenet/densenet161_4xb256_in1k.py
https://download.openmmlab.com/mmclassification/v0/densenet/densenet161_4xb256_in1k_20220426-ee6a80a9.pth
https://pytorch.org/vision/stable/models.html
https://github.com/liuzhuang13/DenseNet
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CHAPTER

TWENTY

EFFICIENTFORMER

EfficientFormer: Vision Transformers at MobileNet Speed

20.1 Abstract

Vision Transformers (ViT) have shown rapid progress in computer vision tasks, achieving promising results on various
benchmarks. However, due to the massive number of parameters and model design, e.g., attention mechanism, ViT-
based models are generally times slower than lightweight convolutional networks. Therefore, the deployment of ViT for
real-time applications is particularly challenging, especially on resource-constrained hardware such as mobile devices.
Recent efforts try to reduce the computation complexity of ViT through network architecture search or hybrid design
with MobileNet block, yet the inference speed is still unsatisfactory. This leads to an important question: can transform-
ers run as fast as MobileNet while obtaining high performance? To answer this, we first revisit the network architecture
and operators used in ViT-based models and identify inefficient designs. Then we introduce a dimension-consistent
pure transformer (without MobileNet blocks) as a design paradigm. Finally, we perform latency-driven slimming to
get a series of final models dubbed EfficientFormer. Extensive experiments show the superiority of EfficientFormer
in performance and speed on mobile devices. Our fastest model, EfficientFormer-L1, achieves 79.2% top-1 accuracy
on ImageNet-1K with only 1.6 ms inference latency on iPhone 12 (compiled with CoreML), which runs as fast as
MobileNetV2×1.4 (1.6 ms, 74.7% top-1), and our largest model, EfficientFormer-L7, obtains 83.3% accuracy with
only 7.0 ms latency. Our work proves that properly designed transformers can reach extremely low latency on mobile
devices while maintaining high performance.

20.2 Results and models

20.2.1 ImageNet-1k

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
EfficientFormer-l1* 12.19 1.30 80.46 94.99 config model
EfficientFormer-l3* 31.41 3.93 82.45 96.18 config model
EfficientFormer-l7* 82.23 10.16 83.40 96.60 config model

Models with * are converted from the official repo. The config files of these models are only for inference. We don’t
ensure these config files’ training accuracy and welcome you to contribute your reproduction results.
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https://arxiv.org/abs/2206.01191
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientformer/efficientformer-l1_8xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientformer/efficientformer-l1_3rdparty_in1k_20220803-d66e61df.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientformer/efficientformer-l3_8xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientformer/efficientformer-l3_3rdparty_in1k_20220803-dde1c8c5.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientformer/efficientformer-l7_8xb128_in1k.py
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https://github.com/snap-research/EfficientFormer


MMClassification Documentation, Release 0.25.0

20.3 Citation

@misc{https://doi.org/10.48550/arxiv.2206.01191,
doi = {10.48550/ARXIV.2206.01191},

url = {https://arxiv.org/abs/2206.01191},

author = {Li, Yanyu and Yuan, Geng and Wen, Yang and Hu, Eric and Evangelidis,␣
→˓Georgios and Tulyakov, Sergey and Wang, Yanzhi and Ren, Jian},

keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and␣
→˓information sciences, FOS: Computer and information sciences},

title = {EfficientFormer: Vision Transformers at MobileNet Speed},

publisher = {arXiv},

year = {2022},

copyright = {Creative Commons Attribution 4.0 International}
}

84 Chapter 20. EfficientFormer



CHAPTER

TWENTYONE

EFFICIENTNET

Rethinking Model Scaling for Convolutional Neural Networks

21.1 Abstract

Convolutional Neural Networks (ConvNets) are commonly developed at a fixed resource budget, and then scaled up for
better accuracy if more resources are available. In this paper, we systematically study model scaling and identify that
carefully balancing network depth, width, and resolution can lead to better performance. Based on this observation,
we propose a new scaling method that uniformly scales all dimensions of depth/width/resolution using a simple yet
highly effective compound coefficient. We demonstrate the effectiveness of this method on scaling up MobileNets and
ResNet. To go even further, we use neural architecture search to design a new baseline network and scale it up to obtain
a family of models, called EfficientNets, which achieve much better accuracy and efficiency than previous ConvNets. In
particular, our EfficientNet-B7 achieves state-of-the-art 84.3% top-1 accuracy on ImageNet, while being 8.4x smaller
and 6.1x faster on inference than the best existing ConvNet. Our EfficientNets also transfer well and achieve state-
of-the-art accuracy on CIFAR-100 (91.7%), Flowers (98.8%), and 3 other transfer learning datasets, with an order of
magnitude fewer parameters.

21.2 Results and models

21.2.1 ImageNet-1k

In the result table, AA means trained with AutoAugment pre-processing, more details can be found in the paper, and
AdvProp is a method to train with adversarial examples, more details can be found in the paper.

Note: In MMClassification, we support training with AutoAugment, don’t support AdvProp by now.
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Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Con-
fig

Down-
load

EfficientNet-B0* 5.29 0.02 76.74 93.17 config model
EfficientNet-B0 (AA)* 5.29 0.02 77.26 93.41 config model
EfficientNet-B0 (AA + AdvProp)* 5.29 0.02 77.53 93.61 config model
EfficientNet-B1* 7.79 0.03 78.68 94.28 config model
EfficientNet-B1 (AA)* 7.79 0.03 79.20 94.42 config model
EfficientNet-B1 (AA + AdvProp)* 7.79 0.03 79.52 94.43 config model
EfficientNet-B2* 9.11 0.03 79.64 94.80 config model
EfficientNet-B2 (AA)* 9.11 0.03 80.21 94.96 config model
EfficientNet-B2 (AA + AdvProp)* 9.11 0.03 80.45 95.07 config model
EfficientNet-B3* 12.23 0.06 81.01 95.34 config model
EfficientNet-B3 (AA)* 12.23 0.06 81.58 95.67 config model
EfficientNet-B3 (AA + AdvProp)* 12.23 0.06 81.81 95.69 config model
EfficientNet-B4* 19.34 0.12 82.57 96.09 config model
EfficientNet-B4 (AA)* 19.34 0.12 82.95 96.26 config model
EfficientNet-B4 (AA + AdvProp)* 19.34 0.12 83.25 96.44 config model
EfficientNet-B5* 30.39 0.24 83.18 96.47 config model
EfficientNet-B5 (AA)* 30.39 0.24 83.82 96.76 config model
EfficientNet-B5 (AA + AdvProp)* 30.39 0.24 84.21 96.98 config model
EfficientNet-B6 (AA)* 43.04 0.41 84.05 96.82 config model
EfficientNet-B6 (AA + AdvProp)* 43.04 0.41 84.74 97.14 config model
EfficientNet-B7 (AA)* 66.35 0.72 84.38 96.88 config model
EfficientNet-B7 (AA + AdvProp)* 66.35 0.72 85.14 97.23 config model
EfficientNet-B8 (AA + AdvProp)* 87.41 1.09 85.38 97.28 config model

Models with * are converted from the official repo. The config files of these models are only for inference. We don’t
ensure these config files’ training accuracy and welcome you to contribute your reproduction results.
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https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b3_8xb32-01norm_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b3_3rdparty_8xb32-aa-advprop_in1k_20220119-53b41118.pth
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https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b4_3rdparty_8xb32_in1k_20220119-81fd4077.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b4_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b4_3rdparty_8xb32-aa_in1k_20220119-45b8bd2b.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b4_8xb32-01norm_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b4_3rdparty_8xb32-aa-advprop_in1k_20220119-38c2238c.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b5_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b5_3rdparty_8xb32_in1k_20220119-e9814430.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b5_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b5_3rdparty_8xb32-aa_in1k_20220119-2cab8b78.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b5_8xb32-01norm_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b5_3rdparty_8xb32-aa-advprop_in1k_20220119-f57a895a.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b6_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b6_3rdparty_8xb32-aa_in1k_20220119-45b03310.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b6_8xb32-01norm_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b6_3rdparty_8xb32-aa-advprop_in1k_20220119-bfe3485e.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b7_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b7_3rdparty_8xb32-aa_in1k_20220119-bf03951c.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b7_8xb32-01norm_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b7_3rdparty_8xb32-aa-advprop_in1k_20220119-c6dbff10.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b8_8xb32-01norm_in1k.py
https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b8_3rdparty_8xb32-aa-advprop_in1k_20220119-297ce1b7.pth
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
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TWENTYTWO

HORNET

HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions

22.1 Abstract

Recent progress in vision Transformers exhibits great success in various tasks driven by the new spatial modeling mech-
anism based on dot-product self-attention. In this paper, we show that the key ingredients behind the vision Transform-
ers, namely input-adaptive, long-range and high-order spatial interactions, can also be efficiently implemented with a
convolution-based framework. We present the Recursive Gated Convolution (g nConv) that performs high-order spa-
tial interactions with gated convolutions and recursive designs. The new operation is highly flexible and customizable,
which is compatible with various variants of convolution and extends the two-order interactions in self-attention to
arbitrary orders without introducing significant extra computation. g nConv can serve as a plug-and-play module to
improve various vision Transformers and convolution-based models. Based on the operation, we construct a new family
of generic vision backbones named HorNet. Extensive experiments on ImageNet classification, COCO object detec-
tion and ADE20K semantic segmentation show HorNet outperform Swin Transformers and ConvNeXt by a significant
margin with similar overall architecture and training configurations. HorNet also shows favorable scalability to more
training data and a larger model size. Apart from the effectiveness in visual encoders, we also show g nConv can be
applied to task-specific decoders and consistently improve dense prediction performance with less computation. Our
results demonstrate that g nConv can be a new basic module for visual modeling that effectively combines the merits
of both vision Transformers and CNNs. Code is available at https://github.com/raoyongming/HorNet.
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22.2 Results and models

22.2.1 ImageNet-1k

Model Pretrain resolu-
tion

Params(M) Flops(G) Top-1
(%)

Top-5
(%)

Con-
fig

Down-
load

HorNet-T* From
scratch

224x224 22.41 3.98 82.84 96.24 config model

HorNet-T-
GF*

From
scratch

224x224 22.99 3.9 82.98 96.38 config model

HorNet-S* From
scratch

224x224 49.53 8.83 83.79 96.75 config model

HorNet-S-
GF*

From
scratch

224x224 50.4 8.71 83.98 96.77 config model

HorNet-B* From
scratch

224x224 87.26 15.59 84.24 96.94 config model

HorNet-B-
GF*

From
scratch

224x224 88.42 15.42 84.32 96.95 config model

*Models with * are converted from the official repo. The config files of these models are only for validation. We don’t
ensure these config files’ training accuracy and welcome you to contribute your reproduction results.

22.2.2 Pre-trained Models

The pre-trained models on ImageNet-21k are used to fine-tune on the downstream tasks.

Model Pretrain resolution Params(M) Flops(G) Download
HorNet-L* ImageNet-21k 224x224 194.54 34.83 model
HorNet-L-GF* ImageNet-21k 224x224 196.29 34.58 model
HorNet-L-GF384* ImageNet-21k 384x384 201.23 101.63 model

*Models with * are converted from the official repo.
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CHAPTER

TWENTYTHREE

HRNET

Deep High-Resolution Representation Learning for Visual Recognition

23.1 Abstract

High-resolution representations are essential for position-sensitive vision problems, such as human pose estimation,
semantic segmentation, and object detection. Existing state-of-the-art frameworks first encode the input image as a
low-resolution representation through a subnetwork that is formed by connecting high-to-low resolution convolutions
in series (e.g., ResNet, VGGNet), and then recover the high-resolution representation from the encoded low-resolution
representation. Instead, our proposed network, named as High-Resolution Network (HRNet), maintains high-resolution
representations through the whole process. There are two key characteristics: (i) Connect the high-to-low resolution
convolution streams in parallel; (ii) Repeatedly exchange the information across resolutions. The benefit is that the
resulting representation is semantically richer and spatially more precise. We show the superiority of the proposed
HRNet in a wide range of applications, including human pose estimation, semantic segmentation, and object detection,
suggesting that the HRNet is a stronger backbone for computer vision problems.

23.2 Results and models

23.3 ImageNet-1k

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
HRNet-W18* 21.30 4.33 76.75 93.44 config model
HRNet-W30* 37.71 8.17 78.19 94.22 config model
HRNet-W32* 41.23 8.99 78.44 94.19 config model
HRNet-W40* 57.55 12.77 78.94 94.47 config model
HRNet-W44* 67.06 14.96 78.88 94.37 config model
HRNet-W48* 77.47 17.36 79.32 94.52 config model
HRNet-W64* 128.06 29.00 79.46 94.65 config model
HRNet-W18 (ssld)* 21.30 4.33 81.06 95.70 config model
HRNet-W48 (ssld)* 77.47 17.36 83.63 96.79 config model

Models with * are converted from the official repo. The config files of these models are only for inference. We don’t
ensure these config files’ training accuracy and welcome you to contribute your reproduction results.
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CHAPTER

TWENTYFOUR

MLP-MIXER

MLP-Mixer: An all-MLP Architecture for Vision

24.1 Abstract

Convolutional Neural Networks (CNNs) are the go-to model for computer vision. Recently, attention-based networks,
such as the Vision Transformer, have also become popular. In this paper we show that while convolutions and attention
are both sufficient for good performance, neither of them are necessary. We present MLP-Mixer, an architecture based
exclusively on multi-layer perceptrons (MLPs). MLP-Mixer contains two types of layers: one with MLPs applied
independently to image patches (i.e. “mixing” the per-location features), and one with MLPs applied across patches
(i.e. “mixing” spatial information). When trained on large datasets, or with modern regularization schemes, MLP-
Mixer attains competitive scores on image classification benchmarks, with pre-training and inference cost comparable
to state-of-the-art models. We hope that these results spark further research beyond the realms of well established
CNNs and Transformers.

24.2 Results and models

24.2.1 ImageNet-1k

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
Mixer-B/16* 59.88 12.61 76.68 92.25 config model
Mixer-L/16* 208.2 44.57 72.34 88.02 config model

Models with * are converted from timm. The config files of these models are only for validation. We don’t ensure these
config files’ training accuracy and welcome you to contribute your reproduction results.
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CHAPTER

TWENTYFIVE

MOBILENET V2

MobileNetV2: Inverted Residuals and Linear Bottlenecks

25.1 Abstract

In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of
mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes. We also describe
efficient ways of applying these mobile models to object detection in a novel framework we call SSDLite. Additionally,
we demonstrate how to build mobile semantic segmentation models through a reduced form of DeepLabv3 which we
call Mobile DeepLabv3.

The MobileNetV2 architecture is based on an inverted residual structure where the input and output of the residual
block are thin bottleneck layers opposite to traditional residual models which use expanded representations in the input
an MobileNetV2 uses lightweight depthwise convolutions to filter features in the intermediate expansion layer. Addi-
tionally, we find that it is important to remove non-linearities in the narrow layers in order to maintain representational
power. We demonstrate that this improves performance and provide an intuition that led to this design. Finally, our
approach allows decoupling of the input/output domains from the expressiveness of the transformation, which provides
a convenient framework for further analysis. We measure our performance on Imagenet classification, COCO object
detection, VOC image segmentation. We evaluate the trade-offs between accuracy, and number of operations measured
by multiply-adds (MAdd), as well as the number of parameters

25.2 Results and models

25.2.1 ImageNet-1k

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
MobileNet V2 3.5 0.319 71.86 90.42 config model | log
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CHAPTER

TWENTYSIX

MOBILENET V3

Searching for MobileNetV3

26.1 Abstract

We present the next generation of MobileNets based on a combination of complementary search techniques as well as
a novel architecture design. MobileNetV3 is tuned to mobile phone CPUs through a combination of hardware-aware
network architecture search (NAS) complemented by the NetAdapt algorithm and then subsequently improved through
novel architecture advances. This paper starts the exploration of how automated search algorithms and network design
can work together to harness complementary approaches improving the overall state of the art. Through this process
we create two new MobileNet models for release: MobileNetV3-Large and MobileNetV3-Small which are targeted
for high and low resource use cases. These models are then adapted and applied to the tasks of object detection and
semantic segmentation. For the task of semantic segmentation (or any dense pixel prediction), we propose a new
efficient segmentation decoder Lite Reduced Atrous Spatial Pyramid Pooling (LR-ASPP). We achieve new state of
the art results for mobile classification, detection and segmentation. MobileNetV3-Large is 3.2% more accurate on
ImageNet classification while reducing latency by 15% compared to MobileNetV2. MobileNetV3-Small is 4.6% more
accurate while reducing latency by 5% compared to MobileNetV2. MobileNetV3-Large detection is 25% faster at
roughly the same accuracy as MobileNetV2 on COCO detection. MobileNetV3-Large LR-ASPP is 30% faster than
MobileNetV2 R-ASPP at similar accuracy for Cityscapes segmentation.

26.2 Results and models

26.2.1 ImageNet-1k

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
MobileNetV3-Small* 2.54 0.06 67.66 87.41 config model
MobileNetV3-Large* 5.48 0.23 74.04 91.34 config model

Models with * are converted from torchvision. The config files of these models are only for validation. We don’t ensure
these config files’ training accuracy and welcome you to contribute your reproduction results.
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CHAPTER

TWENTYSEVEN

MVIT V2

MViTv2: Improved Multiscale Vision Transformers for Classification and Detection

27.1 Abstract

In this paper, we study Multiscale Vision Transformers (MViTv2) as a unified architecture for image and video classi-
fication, as well as object detection. We present an improved version of MViT that incorporates decomposed relative
positional embeddings and residual pooling connections. We instantiate this architecture in five sizes and evaluate
it for ImageNet classification, COCO detection and Kinetics video recognition where it outperforms prior work. We
further compare MViTv2s’ pooling attention to window attention mechanisms where it outperforms the latter in accu-
racy/compute. Without bells-and-whistles, MViTv2 has state-of-the-art performance in 3 domains: 88.8% accuracy on
ImageNet classification, 58.7 boxAP on COCO object detection as well as 86.1% on Kinetics-400 video classification.

27.2 Results and models

27.2.1 ImageNet-1k

Model Pretrain Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
MViTv2-tiny* From scratch 24.17 4.70 82.33 96.15 config model
MViTv2-small* From scratch 34.87 7.00 83.63 96.51 config model
MViTv2-base* From scratch 51.47 10.20 84.34 96.86 config model
MViTv2-large* From scratch 217.99 42.10 85.25 97.14 config model

Models with * are converted from the official repo. The config files of these models are only for inference. We don’t
ensure these config files’ training accuracy and welcome you to contribute your reproduction results.
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CHAPTER

TWENTYEIGHT

POOLFORMER

MetaFormer is Actually What You Need for Vision

28.1 Abstract

Transformers have shown great potential in computer vision tasks. A common belief is their attention-based token
mixer module contributes most to their competence. However, recent works show the attention-based module in trans-
formers can be replaced by spatial MLPs and the resulted models still perform quite well. Based on this observation,
we hypothesize that the general architecture of the transformers, instead of the specific token mixer module, is more es-
sential to the model’s performance. To verify this, we deliberately replace the attention module in transformers with an
embarrassingly simple spatial pooling operator to conduct only basic token mixing. Surprisingly, we observe that the
derived model, termed as PoolFormer, achieves competitive performance on multiple computer vision tasks. For exam-
ple, on ImageNet-1K, PoolFormer achieves 82.1% top-1 accuracy, surpassing well-tuned vision transformer/MLP-like
baselines DeiT-B/ResMLP-B24 by 0.3%/1.1% accuracy with 35%/52% fewer parameters and 49%/61% fewer MACs.
The effectiveness of PoolFormer verifies our hypothesis and urges us to initiate the concept of “MetaFormer”, a general
architecture abstracted from transformers without specifying the token mixer. Based on the extensive experiments, we
argue that MetaFormer is the key player in achieving superior results for recent transformer and MLP-like models on
vision tasks. This work calls for more future research dedicated to improving MetaFormer instead of focusing on the
token mixer modules. Additionally, our proposed PoolFormer could serve as a starting baseline for future MetaFormer
architecture design.

28.2 Results and models

28.2.1 ImageNet-1k

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
PoolFormer-S12* 11.92 1.87 77.24 93.51 config model
PoolFormer-S24* 21.39 3.51 80.33 95.05 config model
PoolFormer-S36* 30.86 5.15 81.43 95.45 config model
PoolFormer-M36* 56.17 8.96 82.14 95.71 config model
PoolFormer-M48* 73.47 11.80 82.51 95.95 config model

Models with * are converted from the official repo. The config files of these models are only for inference. We don’t
ensure these config files’ training accuracy and welcome you to contribute your reproduction results.
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CHAPTER

TWENTYNINE

REGNET

Designing Network Design Spaces

29.1 Abstract

In this work, we present a new network design paradigm. Our goal is to help advance the understanding of network
design and discover design principles that generalize across settings. Instead of focusing on designing individual
network instances, we design network design spaces that parametrize populations of networks. The overall process
is analogous to classic manual design of networks, but elevated to the design space level. Using our methodology we
explore the structure aspect of network design and arrive at a low-dimensional design space consisting of simple, regular
networks that we call RegNet. The core insight of the RegNet parametrization is surprisingly simple: widths and depths
of good networks can be explained by a quantized linear function. We analyze the RegNet design space and arrive at
interesting findings that do not match the current practice of network design. The RegNet design space provides simple
and fast networks that work well across a wide range of flop regimes. Under comparable training settings and flops,
the RegNet models outperform the popular EfficientNet models while being up to 5x faster on GPUs.

29.2 Results and models

29.2.1 ImageNet-1k

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
RegNetX-400MF 5.16 0.41 72.56 90.78 config model | log
RegNetX-800MF 7.26 0.81 74.76 92.32 config model | log
RegNetX-1.6GF 9.19 1.63 76.84 93.31 config model | log
RegNetX-3.2GF 15.3 3.21 78.09 94.08 config model | log
RegNetX-4.0GF 22.12 4.0 78.60 94.17 config model | log
RegNetX-6.4GF 26.21 6.51 79.38 94.65 config model | log
RegNetX-8.0GF 39.57 8.03 79.12 94.51 config model | log
RegNetX-12GF 46.11 12.15 79.67 95.03 config model | log
RegNetX-400MF* 5.16 0.41 72.55 90.91 config model
RegNetX-800MF* 7.26 0.81 75.21 92.37 config model
RegNetX-1.6GF* 9.19 1.63 77.04 93.51 config model
RegNetX-3.2GF* 15.3 3.21 78.26 94.20 config model
RegNetX-4.0GF* 22.12 4.0 78.72 94.22 config model
RegNetX-6.4GF* 26.21 6.51 79.22 94.61 config model
RegNetX-8.0GF* 39.57 8.03 79.31 94.57 config model
RegNetX-12GF* 46.11 12.15 79.91 94.78 config model
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https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-800mf_8xb128_in1k_20211213-222b0f11.pth
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-800mf_8xb128_in1k_20211207_143037.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-1.6gf_8xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-1.6gf_8xb128_in1k_20211213-d1b89758.pth
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-1.6gf_8xb128_in1k_20211208_143018.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-3.2gf_8xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-3.2gf_8xb64_in1k_20211213-1fdd82ae.pth
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-3.2gf_8xb64_in1k_20211208_142720.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-4.0gf_8xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-4.0gf_8xb64_in1k_20211213-efed675c.pth
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-4.0gf_8xb64_in1k_20211207_150431.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-6.4gf_8xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-6.4gf_8xb64_in1k_20211215-5c6089da.pth
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-6.4gf_8xb64_in1k_20211213_172748.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-8.0gf_8xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-8.0gf_8xb64_in1k_20211213-9a9fcc76.pth
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-8.0gf_8xb64_in1k_20211208_103250.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-12gf_8xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-12gf_8xb64_in1k_20211213-5df8c2f8.pth
https://download.openmmlab.com/mmclassification/v0/regnet/regnetx-12gf_8xb64_in1k_20211208_143713.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-400mf_8xb128_in1k
https://download.openmmlab.com/mmclassification/v0/regnet/convert/RegNetX-400MF-0db9f35c.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-800mf_8xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/regnet/convert/RegNetX-800MF-4f9d1e8a.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-1.6gf_8xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/regnet/convert/RegNetX-1.6GF-cfb32375.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-3.2gf_8xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/regnet/convert/RegNetX-3.2GF-82c43fd5.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-4.0gf_8xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/regnet/convert/RegNetX-4.0GF-ef8bb32c.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-6.4gf_8xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/regnet/convert/RegNetX-6.4GF-6888c0ea.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-8.0gf_8xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/regnet/convert/RegNetX-8.0GF-cb4c77ec.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/regnet/regnetx-12gf_8xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/regnet/convert/RegNetX-12GF-0574538f.pth
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Models with * are converted from pycls. The config files of these models are only for validation.

29.3 Citation

@article{radosavovic2020designing,
title={Designing Network Design Spaces},
author={Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He␣

→˓and Piotr Dollár},
year={2020},
eprint={2003.13678},
archivePrefix={arXiv},
primaryClass={cs.CV}

}
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CHAPTER

THIRTY

REPMLP

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers forImage Recognition

30.1 Abstract

We propose RepMLP, a multi-layer-perceptron-style neural network building block for image recognition, which is
composed of a series of fully-connected (FC) layers. Compared to convolutional layers, FC layers are more efficient,
better at modeling the long-range dependencies and positional patterns, but worse at capturing the local structures,
hence usually less favored for image recognition. We propose a structural re-parameterization technique that adds local
prior into an FC to make it powerful for image recognition. Specifically, we construct convolutional layers inside a
RepMLP during training and merge them into the FC for inference. On CIFAR, a simple pure-MLP model shows
performance very close to CNN. By inserting RepMLP in traditional CNN, we improve ResNets by 1.8% accuracy
on ImageNet, 2.9% for face recognition, and 2.3% mIoU on Cityscapes with lower FLOPs. Our intriguing findings
highlight that combining the global representational capacity and positional perception of FC with the local prior
of convolution can improve the performance of neural network with faster speed on both the tasks with translation
invariance (e.g., semantic segmentation) and those with aligned images and positional patterns (e.g., face recognition).

30.2 Results and models

30.2.1 ImageNet-1k

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
RepMLP-B224* 68.24 6.71 80.41 95.12 train_cfg | deploy_cfg model
RepMLP-B256* 96.45 9.69 81.11 95.5 train_cfg | deploy_cfg model

Models with * are converted from the official repo.. The config files of these models are only for validation. We don’t
ensure these config files’ training accuracy and welcome you to contribute your reproduction results.
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https://arxiv.org/abs/2105.01883
https://github.com/open-mmlab/mmclassification/blob/master/configs/repmlp/repmlp-base_8xb64_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repmlp/repmlp-base_delopy_8xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/repmlp/repmlp-base_3rdparty_8xb64_in1k_20220330-1cb1f11b.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/repmlp/repmlp-base_8xb64_in1k-256px.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repmlp/repmlp-b256_deploy_8xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/repmlp/repmlp-base_3rdparty_8xb64_in1k-256px_20220330-7c5a91ce.pth
https://github.com/DingXiaoH/RepMLP
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30.3 How to use

The checkpoints provided are all training-timemodels. Use the reparameterize tool to switch them to more efficient
inference-time architecture, which not only has fewer parameters but also less calculations.

30.3.1 Use tool

Use provided tool to reparameterize the given model and save the checkpoint:

python tools/convert_models/reparameterize_model.py ${CFG_PATH} ${SRC_CKPT_PATH} $
→˓{TARGET_CKPT_PATH}

${CFG_PATH} is the config file, ${SRC_CKPT_PATH} is the source chenpoint file, ${TARGET_CKPT_PATH} is the target
deploy weight file path.

To use reparameterized weights, the config file must switch to the deploy config files.

python tools/test.py ${Deploy_CFG} ${Deploy_Checkpoint} --metrics accuracy

30.3.2 In the code

Use backbone.switch_to_deploy() or classificer.backbone.switch_to_deploy() to switch to the deploy
mode. For example:

from mmcls.models import build_backbone

backbone_cfg=dict(type='RepMLPNet', arch='B', img_size=224, reparam_conv_kernels=(1, 3),␣
→˓deploy=False)
backbone = build_backbone(backbone_cfg)
backbone.switch_to_deploy()

or

from mmcls.models import build_classifier

cfg = dict(
type='ImageClassifier',
backbone=dict(

type='RepMLPNet',
arch='B',
img_size=224,
reparam_conv_kernels=(1, 3),
deploy=False),

neck=dict(type='GlobalAveragePooling'),
head=dict(

type='LinearClsHead',
num_classes=1000,
in_channels=768,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),

))

(continues on next page)
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(continued from previous page)

classifier = build_classifier(cfg)
classifier.backbone.switch_to_deploy()

30.4 Citation

@article{ding2021repmlp,
title={Repmlp: Re-parameterizing convolutions into fully-connected layers for image␣

→˓recognition},
author={Ding, Xiaohan and Xia, Chunlong and Zhang, Xiangyu and Chu, Xiaojie and Han,␣

→˓Jungong and Ding, Guiguang},
journal={arXiv preprint arXiv:2105.01883},
year={2021}

}
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CHAPTER

THIRTYONE

REPVGG

Repvgg: Making vgg-style convnets great again

31.1 Abstract

We present a simple but powerful architecture of convolutional neural network, which has a VGG-like inference-time
body composed of nothing but a stack of 3x3 convolution and ReLU, while the training-time model has a multi-
branch topology. Such decoupling of the training-time and inference-time architecture is realized by a structural re-
parameterization technique so that the model is named RepVGG. On ImageNet, RepVGG reaches over 80% top-1
accuracy, which is the first time for a plain model, to the best of our knowledge. On NVIDIA 1080Ti GPU, RepVGG
models run 83% faster than ResNet-50 or 101% faster than ResNet-101 with higher accuracy and show favorable
accuracy-speed trade-off compared to the state-of-the-art models like EfficientNet and RegNet.
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31.2 Results and models

31.2.1 ImageNet-1k

Model EpochsParams(M) Flops(G) Top-1
(%)

Top-5
(%)

Config Down-
load

RepVGG-
A0*

120 9.11（train) | 8.31
(deploy)

1.52 (train) | 1.36
(deploy)

72.41 90.50 config (train) | con-
fig (deploy)

model

RepVGG-
A1*

120 14.09 (train) | 12.79
(deploy)

2.64 (train) | 2.37
(deploy)

74.47 91.85 config (train) | con-
fig (deploy)

model

RepVGG-
A2*

120 28.21 (train) | 25.5
(deploy)

5.7 (train) | 5.12
(deploy)

76.48 93.01 config (train) |con-
fig (deploy)

model

RepVGG-
B0*

120 15.82 (train) | 14.34
(deploy)

3.42 (train) | 3.06
(deploy)

75.14 92.42 config (train) |con-
fig (deploy)

model

RepVGG-
B1*

120 57.42 (train) | 51.83
(deploy)

13.16 (train) |
11.82 (deploy)

78.37 94.11 config (train) |con-
fig (deploy)

model

RepVGG-
B1g2*

120 45.78 (train) | 41.36
(deploy)

9.82 (train) | 8.82
(deploy)

77.79 93.88 config (train) |con-
fig (deploy)

model

RepVGG-
B1g4*

120 39.97 (train) | 36.13
(deploy)

8.15 (train) | 7.32
(deploy)

77.58 93.84 config (train) |con-
fig (deploy)

model

RepVGG-
B2*

120 89.02 (train) | 80.32
(deploy)

20.46 (train) |
18.39 (deploy)

78.78 94.42 config (train) |con-
fig (deploy)

model

RepVGG-
B2g4*

200 61.76 (train) | 55.78
(deploy)

12.63 (train) |
11.34 (deploy)

79.38 94.68 config (train) |con-
fig (deploy)

model

RepVGG-
B3*

200 123.09 (train) |
110.96 (deploy)

29.17 (train) |
26.22 (deploy)

80.52 95.26 config (train) |con-
fig (deploy)

model

RepVGG-
B3g4*

200 83.83 (train) | 75.63
(deploy)

17.9 (train) | 16.08
(deploy)

80.22 95.10 config (train) |con-
fig (deploy)

model

RepVGG-
D2se*

200 133.33 (train) |
120.39 (deploy)

36.56 (train) |
32.85 (deploy)

81.81 95.94 config (train) |con-
fig (deploy)

model

Models with * are converted from the official repo. The config files of these models are only for validation. We don’t
ensure these config files’ training accuracy and welcome you to contribute your reproduction results.

31.3 How to use

The checkpoints provided are all training-timemodels. Use the reparameterize tool to switch them to more efficient
inference-time architecture, which not only has fewer parameters but also less calculations.

31.3.1 Use tool

Use provided tool to reparameterize the given model and save the checkpoint:

python tools/convert_models/reparameterize_model.py ${CFG_PATH} ${SRC_CKPT_PATH} $
→˓{TARGET_CKPT_PATH}

${CFG_PATH} is the config file, ${SRC_CKPT_PATH} is the source chenpoint file, ${TARGET_CKPT_PATH} is the target
deploy weight file path.

To use reparameterized weights, the config file must switch to the deploy config files.
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https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-A0_4xb64-coslr-120e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-A0_deploy_4xb64-coslr-120e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-A0_deploy_4xb64-coslr-120e_in1k.py
https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A0_3rdparty_4xb64-coslr-120e_in1k_20210909-883ab98c.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-A1_4xb64-coslr-120e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-A1_deploy_4xb64-coslr-120e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-A1_deploy_4xb64-coslr-120e_in1k.py
https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A1_3rdparty_4xb64-coslr-120e_in1k_20210909-24003a24.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-A2_4xb64-coslr-120e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-A2_deploy_4xb64-coslr-120e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-A2_deploy_4xb64-coslr-120e_in1k.py
https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A2_3rdparty_4xb64-coslr-120e_in1k_20210909-97d7695a.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B0_4xb64-coslr-120e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B0_deploy_4xb64-coslr-120e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B0_deploy_4xb64-coslr-120e_in1k.py
https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B0_3rdparty_4xb64-coslr-120e_in1k_20210909-446375f4.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B1_4xb64-coslr-120e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B1_deploy_4xb64-coslr-120e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B1_deploy_4xb64-coslr-120e_in1k.py
https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1_3rdparty_4xb64-coslr-120e_in1k_20210909-750cdf67.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B1g2_4xb64-coslr-120e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B1g2_deploy_4xb64-coslr-120e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B1g2_deploy_4xb64-coslr-120e_in1k.py
https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1g2_3rdparty_4xb64-coslr-120e_in1k_20210909-344f6422.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B1g4_4xb64-coslr-120e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B1g4_deploy_4xb64-coslr-120e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B1g4_deploy_4xb64-coslr-120e_in1k.py
https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1g4_3rdparty_4xb64-coslr-120e_in1k_20210909-d4c1a642.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B2_4xb64-coslr-120e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B2_deploy_4xb64-coslr-120e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B2_deploy_4xb64-coslr-120e_in1k.py
https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B2_3rdparty_4xb64-coslr-120e_in1k_20210909-bd6b937c.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B2g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B2g4_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B2g4_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B2g4_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-7b7955f0.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B3_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B3_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B3_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B3_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-dda968bf.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B3g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B3g4_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B3g4_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B3g4_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-4e54846a.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-D2se_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-D2se_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-D2se_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-D2se_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-cf3139b7.pth
https://github.com/DingXiaoH/RepVGG
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python tools/test.py ${Deploy_CFG} ${Deploy_Checkpoint} --metrics accuracy

31.3.2 In the code

Use backbone.switch_to_deploy() or classificer.backbone.switch_to_deploy() to switch to the deploy
mode. For example:

from mmcls.models import build_backbone

backbone_cfg=dict(type='RepVGG',arch='A0'),
backbone = build_backbone(backbone_cfg)
backbone.switch_to_deploy()

or

from mmcls.models import build_classifier

cfg = dict(
type='ImageClassifier',
backbone=dict(

type='RepVGG',
arch='A0'),

neck=dict(type='GlobalAveragePooling'),
head=dict(

type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),

))

classifier = build_classifier(cfg)
classifier.backbone.switch_to_deploy()

31.4 Citation

@inproceedings{ding2021repvgg,
title={Repvgg: Making vgg-style convnets great again},
author={Ding, Xiaohan and Zhang, Xiangyu and Ma, Ningning and Han, Jungong and Ding,␣

→˓Guiguang and Sun, Jian},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern␣

→˓Recognition},
pages={13733--13742},
year={2021}

}
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CHAPTER

THIRTYTWO

RES2NET

Res2Net: A New Multi-scale Backbone Architecture

32.1 Abstract

Representing features at multiple scales is of great importance for numerous vision tasks. Recent advances in backbone
convolutional neural networks (CNNs) continually demonstrate stronger multi-scale representation ability, leading to
consistent performance gains on a wide range of applications. However, most existing methods represent the multi-
scale features in a layer-wise manner. In this paper, we propose a novel building block for CNNs, namely Res2Net,
by constructing hierarchical residual-like connections within one single residual block. The Res2Net represents multi-
scale features at a granular level and increases the range of receptive fields for each network layer. The proposed Res2Net
block can be plugged into the state-of-the-art backbone CNN models, e.g., ResNet, ResNeXt, and DLA. We evaluate the
Res2Net block on all these models and demonstrate consistent performance gains over baseline models on widely-used
datasets, e.g., CIFAR-100 and ImageNet. Further ablation studies and experimental results on representative computer
vision tasks, i.e., object detection, class activation mapping, and salient object detection, further verify the superiority
of the Res2Net over the state-of-the-art baseline methods.

32.2 Results and models

32.2.1 ImageNet-1k

Model resolu-
tion

Params(M) Flops(G) Top-1
(%)

Top-5
(%)

Con-
fig

Down-
load

Res2Net-50-14w-8s* 224x224 25.06 4.22 78.14 93.85 config model | log
Res2Net-50-26w-8s* 224x224 48.40 8.39 79.20 94.36 config model | log
Res2Net-101-26w-
4s*

224x224 45.21 8.12 79.19 94.44 config model | log

Models with * are converted from the official repo. The config files of these models are only for validation. We don’t
ensure these config files’ training accuracy and welcome you to contribute your reproduction results.
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https://arxiv.org/pdf/1904.01169.pdf
https://github.com/open-mmlab/mmclassification/blob/master/configs/res2net/res2net50-w14-s8_8xb32_in1k.py
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https://github.com/open-mmlab/mmclassification/blob/master/configs/res2net/res2net50-w26-s8_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/res2net/res2net50-w26-s8_3rdparty_8xb32_in1k_20210927-f547a94b.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/res2net/res2net101-w26-s4_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/res2net/res2net101-w26-s4_3rdparty_8xb32_in1k_20210927-870b6c36.pth
https://github.com/Res2Net/Res2Net-PretrainedModels
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CHAPTER

THIRTYTHREE

RESNET

Deep Residual Learning for Image Recognition

33.1 Abstract

Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of net-
works that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual
functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive em-
pirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably
increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8x deeper than
VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet
test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10
with 100 and 1000 layers.

The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely
deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets
are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the
tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

33.2 Results and models

The pre-trained models on ImageNet-21k are used to fine-tune, and therefore don’t have evaluation results.

Model resolution Params(M) Flops(G) Download
ResNet-50-mill 224x224 86.74 15.14 model

The “mill” means using the mutil-label pretrain weight from ImageNet-21K Pretraining for the Masses.

33.2.1 Cifar10

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
ResNet-18 11.17 0.56 94.82 99.87 config model | log
ResNet-34 21.28 1.16 95.34 99.87 config model | log
ResNet-50 23.52 1.31 95.55 99.91 config model | log
ResNet-101 42.51 2.52 95.58 99.87 config model | log
ResNet-152 58.16 3.74 95.76 99.89 config model | log
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https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_3rdparty-mill_in21k_20220331-faac000b.pth
https://github.com/Alibaba-MIIL/ImageNet21K
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet18_8xb16_cifar10.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_b16x8_cifar10_20210528-bd6371c8.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_b16x8_cifar10_20210528-bd6371c8.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet34_8xb16_cifar10.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_b16x8_cifar10_20210528-a8aa36a6.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_b16x8_cifar10_20210528-a8aa36a6.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb16_cifar10.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar10_20210528-f54bfad9.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar10_20210528-f54bfad9.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet101_8xb16_cifar10.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_b16x8_cifar10_20210528-2d29e936.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_b16x8_cifar10_20210528-2d29e936.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet152_8xb16_cifar10.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_b16x8_cifar10_20210528-3e8e9178.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_b16x8_cifar10_20210528-3e8e9178.log.json
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33.2.2 Cifar100

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
ResNet-50 23.71 1.31 79.90 95.19 config model | log

33.2.3 ImageNet-1k

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
ResNet-18 11.69 1.82 69.90 89.43 config model | log
ResNet-34 21.8 3.68 73.62 91.59 config model | log
ResNet-50 25.56 4.12 76.55 93.06 config model | log
ResNet-101 44.55 7.85 77.97 94.06 config model | log
ResNet-152 60.19 11.58 78.48 94.13 config model | log
ResNetV1C-50 25.58 4.36 77.01 93.58 config model | log
ResNetV1C-101 44.57 8.09 78.30 94.27 config model | log
ResNetV1C-152 60.21 11.82 78.76 94.41 config model | log
ResNetV1D-50 25.58 4.36 77.54 93.57 config model | log
ResNetV1D-101 44.57 8.09 78.93 94.48 config model | log
ResNetV1D-152 60.21 11.82 79.41 94.70 config model | log
ResNet-50 (fp16) 25.56 4.12 76.30 93.07 config model | log
Wide-ResNet-50* 68.88 11.44 78.48 94.08 config model
Wide-ResNet-101* 126.89 22.81 78.84 94.28 config model
ResNet-50 (rsb-a1) 25.56 4.12 80.12 94.78 config model | log
ResNet-50 (rsb-a2) 25.56 4.12 79.55 94.37 config model | log
ResNet-50 (rsb-a3) 25.56 4.12 78.30 93.80 config model | log

The “rsb” means using the training settings from ResNet strikes back: An improved training procedure in timm.

Models with * are converted from the official repo. The config files of these models are only for validation. We don’t
ensure these config files’ training accuracy and welcome you to contribute your reproduction results.

33.2.4 CUB-200-2011

Model Pretrain resolution Params(M) Flops(G) Top-1 (%) Config Download
ResNet-50 ImageNet-21k-mill 448x448 23.92 16.48 88.45 config model | log

33.2.5 Stanford-Cars

Model Pretrain resolution Params(M) Flops(G) Top-1 (%) Config Download
ResNet-50 ImageNet-21k-mill 448x448 23.92 16.48 92.82 config model | log
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https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb16_cifar100.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar100_20210528-67b58a1b.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar100_20210528-67b58a1b.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet18_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_8xb32_in1k_20210831-fbbb1da6.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_8xb32_in1k_20210831-fbbb1da6.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet34_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_8xb32_in1k_20210831-f257d4e6.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_8xb32_in1k_20210831-f257d4e6.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb32_in1k_20210831-ea4938fc.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb32_in1k_20210831-ea4938fc.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet101_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_8xb32_in1k_20210831-539c63f8.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_8xb32_in1k_20210831-539c63f8.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet152_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_8xb32_in1k_20210901-4d7582fa.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_8xb32_in1k_20210901-4d7582fa.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnetv1c50_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1c50_8xb32_in1k_20220214-3343eccd.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1c50_8xb32_in1k_20220214-3343eccd.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnetv1c101_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1c101_8xb32_in1k_20220214-434fe45f.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1c101_8xb32_in1k_20220214-434fe45f.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnetv1c152_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1c152_8xb32_in1k_20220214-c013291f.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1c152_8xb32_in1k_20220214-c013291f.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnetv1d50_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d50_b32x8_imagenet_20210531-db14775a.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d50_b32x8_imagenet_20210531-db14775a.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnetv1d101_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d101_b32x8_imagenet_20210531-6e13bcd3.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d101_b32x8_imagenet_20210531-6e13bcd3.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnetv1d152_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d152_b32x8_imagenet_20210531-278cf22a.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d152_b32x8_imagenet_20210531-278cf22a.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb32-fp16_in1k.py
https://download.openmmlab.com/mmclassification/v0/fp16/resnet50_batch256_fp16_imagenet_20210320-b3964210.pth
https://download.openmmlab.com/mmclassification/v0/fp16/resnet50_batch256_fp16_imagenet_20210320-b3964210.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/wide-resnet50_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnet/wide-resnet50_3rdparty_8xb32_in1k_20220304-66678344.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet101_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnet/wide-resnet101_3rdparty_8xb32_in1k_20220304-8d5f9d61.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb256-rsb-a1-600e_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a1-600e_in1k_20211228-20e21305.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a1-600e_in1k_20211228-20e21305.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb256-rsb-a2-300e_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a2-300e_in1k_20211228-0fd8be6e.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a2-300e_in1k_20211228-0fd8be6e.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb256-rsb-a3-100e_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a3-100e_in1k_20211228-3493673c.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a3-100e_in1k_20211228-3493673c.log.json
https://arxiv.org/abs/2110.00476
https://github.com/pytorch/vision
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_3rdparty-mill_in21k_20220331-faac000b.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb8_cub.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb8_cub_20220307-57840e60.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb8_cub_20220307-57840e60.log.json
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_3rdparty-mill_in21k_20220331-faac000b.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb8_cars.py
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb8_cars_20220812-9d85901a.pth
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb8_cars_20220812-9d85901a.log.json
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CHAPTER

THIRTYFOUR

RESNEXT

Aggregated Residual Transformations for Deep Neural Networks

34.1 Abstract

We present a simple, highly modularized network architecture for image classification. Our network is constructed by
repeating a building block that aggregates a set of transformations with the same topology. Our simple design results
in a homogeneous, multi-branch architecture that has only a few hyper-parameters to set. This strategy exposes a new
dimension, which we call “cardinality” (the size of the set of transformations), as an essential factor in addition to the
dimensions of depth and width. On the ImageNet-1K dataset, we empirically show that even under the restricted condi-
tion of maintaining complexity, increasing cardinality is able to improve classification accuracy. Moreover, increasing
cardinality is more effective than going deeper or wider when we increase the capacity. Our models, named ResNeXt,
are the foundations of our entry to the ILSVRC 2016 classification task in which we secured 2nd place. We further
investigate ResNeXt on an ImageNet-5K set and the COCO detection set, also showing better results than its ResNet
counterpart. The code and models are publicly available online.

34.2 Results and models

34.2.1 ImageNet-1k

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
ResNeXt-32x4d-50 25.03 4.27 77.90 93.66 config model | log
ResNeXt-32x4d-101 44.18 8.03 78.61 94.17 config model | log
ResNeXt-32x8d-101 88.79 16.5 79.27 94.58 config model | log
ResNeXt-32x4d-152 59.95 11.8 78.88 94.33 config model | log

34.3 Citation
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https://openaccess.thecvf.com/content_cvpr_2017/html/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.html
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext50-32x4d_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnext/resnext50_32x4d_b32x8_imagenet_20210429-56066e27.pth
https://download.openmmlab.com/mmclassification/v0/resnext/resnext50_32x4d_b32x8_imagenet_20210429-56066e27.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext101-32x4d_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x4d_b32x8_imagenet_20210506-e0fa3dd5.pth
https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x4d_b32x8_imagenet_20210506-e0fa3dd5.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext101-32x8d_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x8d_b32x8_imagenet_20210506-23a247d5.pth
https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x8d_b32x8_imagenet_20210506-23a247d5.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext152-32x4d_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/resnext/resnext152_32x4d_b32x8_imagenet_20210524-927787be.pth
https://download.openmmlab.com/mmclassification/v0/resnext/resnext152_32x4d_b32x8_imagenet_20210524-927787be.log.json
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CHAPTER

THIRTYFIVE

SE-RESNET

Squeeze-and-Excitation Networks

35.1 Abstract

The central building block of convolutional neural networks (CNNs) is the convolution operator, which enables net-
works to construct informative features by fusing both spatial and channel-wise information within local receptive fields
at each layer. A broad range of prior research has investigated the spatial component of this relationship, seeking to
strengthen the representational power of a CNN by enhancing the quality of spatial encodings throughout its feature
hierarchy. In this work, we focus instead on the channel relationship and propose a novel architectural unit, which we
term the “Squeeze-and-Excitation” (SE) block, that adaptively recalibrates channel-wise feature responses by explic-
itly modelling interdependencies between channels. We show that these blocks can be stacked together to form SENet
architectures that generalise extremely effectively across different datasets. We further demonstrate that SE blocks
bring significant improvements in performance for existing state-of-the-art CNNs at slight additional computational
cost. Squeeze-and-Excitation Networks formed the foundation of our ILSVRC 2017 classification submission which
won first place and reduced the top-5 error to 2.251%, surpassing the winning entry of 2016 by a relative improvement
of ~25%.

35.2 Results and models

35.2.1 ImageNet-1k

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
SE-ResNet-50 28.09 4.13 77.74 93.84 config model | log
SE-ResNet-101 49.33 7.86 78.26 94.07 config model | log
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https://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
https://github.com/open-mmlab/mmclassification/blob/master/configs/seresnet/seresnet50_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet50_batch256_imagenet_20200804-ae206104.pth
https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet50_batch256_imagenet_20200708-657b3c36.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/seresnet/seresnet101_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet101_batch256_imagenet_20200804-ba5b51d4.pth
https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet101_batch256_imagenet_20200708-038a4d04.log.json
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CHAPTER

THIRTYSIX

SHUFFLENET V1

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

36.1 Abstract

We introduce an extremely computation-efficient CNN architecture named ShuffleNet, which is designed specially for
mobile devices with very limited computing power (e.g., 10-150 MFLOPs). The new architecture utilizes two new
operations, pointwise group convolution and channel shuffle, to greatly reduce computation cost while maintaining ac-
curacy. Experiments on ImageNet classification and MS COCO object detection demonstrate the superior performance
of ShuffleNet over other structures, e.g. lower top-1 error (absolute 7.8%) than recent MobileNet on ImageNet clas-
sification task, under the computation budget of 40 MFLOPs. On an ARM-based mobile device, ShuffleNet achieves
~13x actual speedup over AlexNet while maintaining comparable accuracy.

36.2 Results and models

36.2.1 ImageNet-1k

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
ShuffleNetV1 1.0x (group=3) 1.87 0.146 68.13 87.81 config model | log

36.3 Citation

@inproceedings{zhang2018shufflenet,
title={Shufflenet: An extremely efficient convolutional neural network for mobile␣

→˓devices},
author={Zhang, Xiangyu and Zhou, Xinyu and Lin, Mengxiao and Sun, Jian},
booktitle={Proceedings of the IEEE conference on computer vision and pattern␣

→˓recognition},
pages={6848--6856},
year={2018}

}
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THIRTYSEVEN

SHUFFLENET V2

Shufflenet v2: Practical guidelines for efficient cnn architecture design

37.1 Abstract

Currently, the neural network architecture design is mostly guided by the indirect metric of computation complexity,
i.e., FLOPs. However, the direct metric, e.g., speed, also depends on the other factors such as memory access cost
and platform characterics. Thus, this work proposes to evaluate the direct metric on the target platform, beyond only
considering FLOPs. Based on a series of controlled experiments, this work derives several practical guidelines for
efficient network design. Accordingly, a new architecture is presented, called ShuffleNet V2. Comprehensive ablation
experiments verify that our model is the state-of-the-art in terms of speed and accuracy tradeoff.

37.2 Results and models

37.2.1 ImageNet-1k

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
ShuffleNetV2 1.0x 2.28 0.149 69.55 88.92 config model | log

37.3 Citation

@inproceedings{ma2018shufflenet,
title={Shufflenet v2: Practical guidelines for efficient cnn architecture design},
author={Ma, Ningning and Zhang, Xiangyu and Zheng, Hai-Tao and Sun, Jian},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={116--131},
year={2018}

}
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CHAPTER

THIRTYEIGHT

SWIN TRANSFORMER

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

38.1 Abstract

This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose back-
bone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between
the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images
compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation
is computed with Shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention
computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical
architecture has the flexibility to model at various scales and has linear computational complexity with respect to im-
age size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image
classification (87.3 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box
AP and 51.1 mask AP on COCO test-dev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance
surpasses the previous state-of-the-art by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU
on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The hierarchical design
and the shifted window approach also prove beneficial for all-MLP architectures.

38.2 Results and models

38.2.1 ImageNet-21k

The pre-trained models on ImageNet-21k are used to fine-tune, and therefore don’t have evaluation results.

Model resolution Params(M) Flops(G) Download
Swin-B 224x224 86.74 15.14 model
Swin-B 384x384 86.88 44.49 model
Swin-L 224x224 195.00 34.04 model
Swin-L 384x384 195.20 100.04 model
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https://arxiv.org/pdf/2103.14030.pdf
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38.2.2 ImageNet-1k

Model Pretrain resolu-
tion

Params(M) Flops(G) Top-1
(%)

Top-5
(%)

Con-
fig

Down-
load

Swin-T From scratch 224x224 28.29 4.36 81.18 95.61 config model |
log

Swin-S From scratch 224x224 49.61 8.52 83.02 96.29 config model |
log

Swin-B From scratch 224x224 87.77 15.14 83.36 96.44 config model |
log

Swin-
S*

From scratch 224x224 49.61 8.52 83.21 96.25 config model

Swin-
B*

From scratch 224x224 87.77 15.14 83.42 96.44 config model

Swin-
B*

From scratch 384x384 87.90 44.49 84.49 96.95 config model

Swin-
B*

ImageNet-
21k

224x224 87.77 15.14 85.16 97.50 config model

Swin-
B*

ImageNet-
21k

384x384 87.90 44.49 86.44 98.05 config model

Swin-
L*

ImageNet-
21k

224x224 196.53 34.04 86.24 97.88 config model

Swin-
L*

ImageNet-
21k

384x384 196.74 100.04 87.25 98.25 config model

Models with * are converted from the official repo. The config files of these models are only for validation. We don’t
ensure these config files’ training accuracy and welcome you to contribute your reproduction results.

38.2.3 CUB-200-2011

Model Pretrain resolution Params(M) Flops(G) Top-1 (%) Config Download
Swin-L ImageNet-21k 384x384 195.51 100.04 91.87 config model | log

38.3 Citation

@article{liu2021Swin,
title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang,␣

→˓Zheng and Lin, Stephen and Guo, Baining},
journal={arXiv preprint arXiv:2103.14030},
year={2021}

}
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https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin-base_16xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin_base_patch4_window7_224-4670dd19.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin-base_16xb64_in1k-384px.py
https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin_base_patch4_window12_384-02c598a4.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin-base_16xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin_base_patch4_window7_224_22kto1k-f967f799.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin-base_16xb64_in1k-384px.py
https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin_base_patch4_window12_384_22kto1k-d59b0d1d.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin-large_16xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin_large_patch4_window7_224_22kto1k-5f0996db.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin-large_16xb64_in1k-384px.py
https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin_large_patch4_window12_384_22kto1k-0a40944b.pth
https://github.com/microsoft/Swin-Transformer#main-results-on-imagenet-with-pretrained-models
https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin-base_3rdparty_in21k-384px.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin-large_8xb8_cub_384px.py
https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin-large_8xb8_cub_384px_20220307-1bbaee6a.pth
https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin-large_8xb8_cub_384px_20220307-1bbaee6a.log.json
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THIRTYNINE

SWIN TRANSFORMER V2

Swin Transformer V2: Scaling Up Capacity and Resolution

39.1 Abstract

Large-scale NLP models have been shown to significantly improve the performance on language tasks with no signs
of saturation. They also demonstrate amazing few-shot capabilities like that of human beings. This paper aims to
explore large-scale models in computer vision. We tackle three major issues in training and application of large vision
models, including training instability, resolution gaps between pre-training and fine-tuning, and hunger on labelled
data. Three main techniques are proposed: 1) a residual-post-norm method combined with cosine attention to improve
training stability; 2) A log-spaced continuous position bias method to effectively transfer models pre-trained using low-
resolution images to downstream tasks with high-resolution inputs; 3) A self-supervised pre-training method, SimMIM,
to reduce the needs of vast labeled images. Through these techniques, this paper successfully trained a 3 billion-
parameter Swin Transformer V2 model, which is the largest dense vision model to date, and makes it capable of
training with images of up to 1,536×1,536 resolution. It set new performance records on 4 representative vision tasks,
including ImageNet-V2 image classification, COCO object detection, ADE20K semantic segmentation, and Kinetics-
400 video action classification. Also note our training is much more efficient than that in Google’s billion-level visual
models, which consumes 40 times less labelled data and 40 times less training time.

39.2 Results and models

39.2.1 ImageNet-21k

The pre-trained models on ImageNet-21k are used to fine-tune, and therefore don’t have evaluation results.

Model resolution Params(M) Flops(G) Download
Swin-B* 192x192 87.92 8.51 model
Swin-L* 192x192 196.74 19.04 model
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https://arxiv.org/abs/2111.09883.pdf
https://download.openmmlab.com/mmclassification/v0/swin-v2/pretrain/swinv2-base-w12_3rdparty_in21k-192px_20220803-f7dc9763.pth
https://download.openmmlab.com/mmclassification/v0/swin-v2/pretrain/swinv2-large-w12_3rdparty_in21k-192px_20220803-d9073fee.pth
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39.2.2 ImageNet-1k

Model Pretrain resolu-
tion

win-
dow

Params(M) Flops(G) Top-1
(%)

Top-5
(%)

Con-
fig

Down-
load

Swin-
T*

From
scratch

256x256 8x8 28.35 4.35 81.76 95.87 con-
fig

model

Swin-
T*

From
scratch

256x256 16x16 28.35 4.4 82.81 96.23 con-
fig

model

Swin-
S*

From
scratch

256x256 8x8 49.73 8.45 83.74 96.6 con-
fig

model

Swin-
S*

From
scratch

256x256 16x16 49.73 8.57 84.13 96.83 con-
fig

model

Swin-
B*

From
scratch

256x256 8x8 87.92 14.99 84.2 96.86 con-
fig

model

Swin-
B*

From
scratch

256x256 16x16 87.92 15.14 84.6 97.05 con-
fig

model

Swin-
B*

ImageNet-
21k

256x256 16x16 87.92 15.14 86.17 97.88 con-
fig

model

Swin-
B*

ImageNet-
21k

384x384 24x24 87.92 34.07 87.14 98.23 con-
fig

model

Swin-
L*

ImageNet-
21k

256X256 16x16 196.75 33.86 86.93 98.06 con-
fig

model

Swin-
L*

ImageNet-
21k

384x384 24x24 196.75 76.2 87.59 98.27 con-
fig

model

Models with * are converted from the official repo. The config files of these models are only for validation. We don’t
ensure these config files’ training accuracy and welcome you to contribute your reproduction results.

ImageNet-21k pretrained models with input resolution of 256x256 and 384x384 both fine-tuned from the same pre-
training model using a smaller input resolution of 192x192.

39.3 Citation

@article{https://doi.org/10.48550/arxiv.2111.09883,
doi = {10.48550/ARXIV.2111.09883},
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https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer_v2/swinv2-small-w8_16xb64_in1k-256px.py
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https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer_v2/swinv2-base-w8_16xb64_in1k-256px.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer_v2/swinv2-base-w8_16xb64_in1k-256px.py
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https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer_v2/swinv2-base-w16_16xb64_in1k-256px.py
https://download.openmmlab.com/mmclassification/v0/swin-v2/swinv2-base-w16_3rdparty_in1k-256px_20220803-5a1886b7.pth
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https://download.openmmlab.com/mmclassification/v0/swin-v2/swinv2-base-w16_in21k-pre_3rdparty_in1k-256px_20220803-8d7aa8ad.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer_v2/swinv2-base-w24_in21k-pre_16xb64_in1k-384px.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer_v2/swinv2-base-w24_in21k-pre_16xb64_in1k-384px.py
https://download.openmmlab.com/mmclassification/v0/swin-v2/swinv2-base-w24_in21k-pre_3rdparty_in1k-384px_20220803-44eb70f8.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer_v2/swinv2-large-w16_in21k-pre_16xb64_in1k-256px.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer_v2/swinv2-large-w16_in21k-pre_16xb64_in1k-256px.py
https://download.openmmlab.com/mmclassification/v0/swin-v2/swinv2-large-w16_in21k-pre_3rdparty_in1k-256px_20220803-c40cbed7.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer_v2/swinv2-large-w24_in21k-pre_16xb64_in1k-384px.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer_v2/swinv2-large-w24_in21k-pre_16xb64_in1k-384px.py
https://download.openmmlab.com/mmclassification/v0/swin-v2/swinv2-large-w24_in21k-pre_3rdparty_in1k-384px_20220803-3b36c165.pth
https://github.com/microsoft/Swin-Transformer#main-results-on-imagenet-with-pretrained-models
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TOKENS-TO-TOKEN VIT

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

40.1 Abstract

Transformers, which are popular for language modeling, have been explored for solving vision tasks recently, e.g., the
Vision Transformer (ViT) for image classification. The ViT model splits each image into a sequence of tokens with
fixed length and then applies multiple Transformer layers to model their global relation for classification. However,
ViT achieves inferior performance to CNNs when trained from scratch on a midsize dataset like ImageNet. We find it
is because: 1) the simple tokenization of input images fails to model the important local structure such as edges and
lines among neighboring pixels, leading to low training sample efficiency; 2) the redundant attention backbone design
of ViT leads to limited feature richness for fixed computation budgets and limited training samples. To overcome
such limitations, we propose a new Tokens-To-Token Vision Transformer (T2T-ViT), which incorporates 1) a layer-
wise Tokens-to-Token (T2T) transformation to progressively structurize the image to tokens by recursively aggregating
neighboring Tokens into one Token (Tokens-to-Token), such that local structure represented by surrounding tokens
can be modeled and tokens length can be reduced; 2) an efficient backbone with a deep-narrow structure for vision
transformer motivated by CNN architecture design after empirical study. Notably, T2T-ViT reduces the parameter
count and MACs of vanilla ViT by half, while achieving more than 3.0% improvement when trained from scratch on
ImageNet. It also outperforms ResNets and achieves comparable performance with MobileNets by directly training
on ImageNet. For example, T2T-ViT with comparable size to ResNet50 (21.5M parameters) can achieve 83.3% top1
accuracy in image resolution 384×384 on ImageNet.

40.2 Results and models

40.2.1 ImageNet-1k

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
T2T-ViT_t-14 21.47 4.34 81.83 95.84 config model | log
T2T-ViT_t-19 39.08 7.80 82.63 96.18 config model | log
T2T-ViT_t-24 64.00 12.69 82.71 96.09 config model | log

In consistent with the official repo, we adopt the best checkpoints during training.
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https://arxiv.org/abs/2101.11986
https://github.com/open-mmlab/mmclassification/blob/master/configs/t2t_vit/t2t-vit-t-14_8xb64_in1k.py
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https://github.com/open-mmlab/mmclassification/blob/master/configs/t2t_vit/t2t-vit-t-24_8xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/t2t-vit/t2t-vit-t-24_8xb64_in1k_20211214-b2a68ae3.pth
https://download.openmmlab.com/mmclassification/v0/t2t-vit/t2t-vit-t-24_8xb64_in1k_20211214-b2a68ae3.log.json
https://github.com/yitu-opensource/T2T-ViT
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FORTYONE

TNT

Transformer in Transformer

41.1 Abstract

Transformer is a new kind of neural architecture which encodes the input data as powerful features via the attention
mechanism. Basically, the visual transformers first divide the input images into several local patches and then calculate
both representations and their relationship. Since natural images are of high complexity with abundant detail and color
information, the granularity of the patch dividing is not fine enough for excavating features of objects in different scales
and locations. In this paper, we point out that the attention inside these local patches are also essential for building
visual transformers with high performance and we explore a new architecture, namely, Transformer iN Transformer
(TNT). Specifically, we regard the local patches (e.g., 16×16) as “visual sentences” and present to further divide them
into smaller patches (e.g., 4×4) as “visual words”. The attention of each word will be calculated with other words in the
given visual sentence with negligible computational costs. Features of both words and sentences will be aggregated to
enhance the representation ability. Experiments on several benchmarks demonstrate the effectiveness of the proposed
TNT architecture, e.g., we achieve an 81.5% top-1 accuracy on the ImageNet, which is about 1.7% higher than that of
the state-of-the-art visual transformer with similar computational cost.

41.2 Results and models

41.2.1 ImageNet-1k

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
TNT-small* 23.76 3.36 81.52 95.73 config model

Models with * are converted from timm. The config files of these models are only for validation. We don’t ensure these
config files’ training accuracy and welcome you to contribute your reproduction results.
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FORTYTWO

TWINS

Twins: Revisiting the Design of Spatial Attention in Vision Transformers

42.1 Abstract

Very recently, a variety of vision transformer architectures for dense prediction tasks have been proposed and they
show that the design of spatial attention is critical to their success in these tasks. In this work, we revisit the de-
sign of the spatial attention and demonstrate that a carefully-devised yet simple spatial attention mechanism performs
favourably against the state-of-the-art schemes. As a result, we propose two vision transformer architectures, namely,
Twins-PCPVT and Twins-SVT. Our proposed architectures are highly-efficient and easy to implement, only involving
matrix multiplications that are highly optimized in modern deep learning frameworks. More importantly, the proposed
architectures achieve excellent performance on a wide range of visual tasks, including image level classification as well
as dense detection and segmentation. The simplicity and strong performance suggest that our proposed architectures
may serve as stronger backbones for many vision tasks. Our code is released at this https URL.

42.2 Results and models

42.2.1 ImageNet-1k

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
PCPVT-small* 24.11 3.67 81.14 95.69 config model
PCPVT-base* 43.83 6.45 82.66 96.26 config model
PCPVT-large* 60.99 9.51 83.09 96.59 config model
SVT-small* 24.06 2.82 81.77 95.57 config model
SVT-base* 56.07 8.35 83.13 96.29 config model
SVT-large* 99.27 14.82 83.60 96.50 config model

Models with * are converted from the official repo. The config files of these models are only for validation. We don’t
ensure these config files’ training accuracy and welcome you to contribute your reproduction results. The validation
accuracy is a little different from the official paper because of the PyTorch version. This result is get in PyTorch=1.9
while the official result is get in PyTorch=1.7
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http://arxiv-export-lb.library.cornell.edu/abs/2104.13840
https://github.com/Meituan-AutoML/Twins
https://github.com/open-mmlab/mmclassification/blob/master/configs/twins/twins-pcpvt-small_8xb128_in1k.py
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https://github.com/open-mmlab/mmclassification/blob/master/configs/twins/twins-svt-base_8xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/twins/twins-svt-base_3rdparty_8xb128_in1k_20220126-e31cc8e9.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/twins/twins-svt-large_16xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/twins/twins-svt-large_3rdparty_16xb64_in1k_20220126-4817645f.pth
https://github.com/Meituan-AutoML/Twins
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FORTYTHREE

VISUAL ATTENTION NETWORK

Visual Attention Network

43.1 Abstract

While originally designed for natural language processing (NLP) tasks, the self-attention mechanism has recently taken
various computer vision areas by storm. However, the 2D nature of images brings three challenges for applying self-
attention in computer vision. (1) Treating images as 1D sequences neglects their 2D structures. (2) The quadratic
complexity is too expensive for high-resolution images. (3) It only captures spatial adaptability but ignores channel
adaptability. In this paper, we propose a novel large kernel attention (LKA) module to enable self-adaptive and long-
range correlations in self-attention while avoiding the above issues. We further introduce a novel neural network based
on LKA, namely Visual Attention Network (VAN). While extremely simple and efficient, VAN outperforms the state-of-
the-art vision transformers and convolutional neural networks with a large margin in extensive experiments, including
image classification, object detection, semantic segmentation, instance segmentation, etc.

43.2 Results and models

43.2.1 ImageNet-1k

Model Pretrain resolu-
tion

Params(M) Flops(G) Top-1
(%)

Top-5
(%)

Con-
fig

Down-
load

VAN-
B0*

From
scratch

224x224 4.11 0.88 75.41 93.02 config model

VAN-
B1*

From
scratch

224x224 13.86 2.52 81.01 95.63 config model

VAN-
B2*

From
scratch

224x224 26.58 5.03 82.80 96.21 config model

VAN-
B3*

From
scratch

224x224 44.77 8.99 83.86 96.73 config model

VAN-
B4*

From
scratch

224x224 60.28 12.22 84.13 96.86 config model

*Models with * are converted from the official repo. The config files of these models are only for validation. We don’t
ensure these config files’ training accuracy and welcome you to contribute your reproduction results.
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https://arxiv.org/pdf/2202.09741v2.pdf
https://github.com/open-mmlab/mmclassification/blob/master/configs/van/van-b0_8xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/van/van-tiny_8xb128_in1k_20220501-385941af.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/van/van-b1_8xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/van/van-small_8xb128_in1k_20220501-17bc91aa.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/van/van-b2_8xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/van/van-base_8xb128_in1k_20220501-6a4cc31b.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/van/van-b3_8xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/van/van-large_8xb128_in1k_20220501-f212ba21.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/van/van-b4_8xb128_in1k.py
https://download.openmmlab.com/mmclassification/v0/van/van-b4_3rdparty_in1k_20220909-f4665b92.pth
https://github.com/Visual-Attention-Network/VAN-Classification
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43.2.2 Pre-trained Models

The pre-trained models on ImageNet-21k are used to fine-tune on the downstream tasks.

Model Pretrain resolution Params(M) Flops(G) Download
VAN-B4* ImageNet-21k 224x224 60.28 12.22 model
VAN-B5* ImageNet-21k 224x224 89.97 17.21 model
VAN-B6* ImageNet-21k 224x224 283.9 55.28 model

*Models with * are converted from the official repo.
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FORTYFOUR

VGG

Very Deep Convolutional Networks for Large-Scale Image Recognition

44.1 Abstract

In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recog-
nition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture
with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations
can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge
2014 submission, where our team secured the first and the second places in the localisation and classification tracks
respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art
results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the
use of deep visual representations in computer vision.

44.2 Results and models

44.2.1 ImageNet-1k

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
VGG-11 132.86 7.63 68.75 88.87 config model | log
VGG-13 133.05 11.34 70.02 89.46 config model | log
VGG-16 138.36 15.5 71.62 90.49 config model | log
VGG-19 143.67 19.67 72.41 90.80 config model | log
VGG-11-BN 132.87 7.64 70.67 90.16 config model | log
VGG-13-BN 133.05 11.36 72.12 90.66 config model | log
VGG-16-BN 138.37 15.53 73.74 91.66 config model | log
VGG-19-BN 143.68 19.7 74.68 92.27 config model | log
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https://arxiv.org/abs/1409.1556
https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg11_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_batch256_imagenet_20210208-4271cd6c.pth
https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_batch256_imagenet_20210208-4271cd6c.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg13_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_batch256_imagenet_20210208-4d1d6080.pth
https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_batch256_imagenet_20210208-4d1d6080.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg16_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_batch256_imagenet_20210208-db26f1a5.pth
https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_batch256_imagenet_20210208-db26f1a5.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg19_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_batch256_imagenet_20210208-e6920e4a.pth
https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_batch256_imagenet_20210208-e6920e4a.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg11bn_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_bn_batch256_imagenet_20210207-f244902c.pth
https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_bn_batch256_imagenet_20210207-f244902c.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg13bn_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_bn_batch256_imagenet_20210207-1a8b7864.pth
https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_bn_batch256_imagenet_20210207-1a8b7864.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg16bn_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_bn_batch256_imagenet_20210208-7e55cd29.pth
https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_bn_batch256_imagenet_20210208-7e55cd29.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg19bn_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_bn_batch256_imagenet_20210208-da620c4f.pth
https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_bn_batch256_imagenet_20210208-da620c4f.log.json
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FORTYFIVE

VISION TRANSFORMER

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

45.1 Abstract

While the Transformer architecture has become the de-facto standard for natural language processing tasks, its ap-
plications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional
networks, or used to replace certain components of convolutional networks while keeping their overall structure in
place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of
image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and
transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vi-
sion Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring
substantially fewer computational resources to train.

45.2 Results and models

The training step of Vision Transformers is divided into two steps. The first step is training the model on a large dataset,
like ImageNet-21k, and get the pre-trained model. And the second step is training the model on the target dataset, like
ImageNet-1k, and get the fine-tuned model. Here, we provide both pre-trained models and fine-tuned models.

45.2.1 ImageNet-21k

The pre-trained models on ImageNet-21k are used to fine-tune, and therefore don’t have evaluation results.

Model resolution Params(M) Flops(G) Download
ViT-B16* 224x224 86.86 33.03 model
ViT-B32* 224x224 88.30 8.56 model
ViT-L16* 224x224 304.72 116.68 model

Models with * are converted from the official repo.
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https://arxiv.org/pdf/2010.11929.pdf
https://download.openmmlab.com/mmclassification/v0/vit/pretrain/vit-base-p16_3rdparty_pt-64xb64_in1k-224_20210928-02284250.pth
https://download.openmmlab.com/mmclassification/v0/vit/pretrain/vit-base-p32_3rdparty_pt-64xb64_in1k-224_20210928-eee25dd4.pth
https://download.openmmlab.com/mmclassification/v0/vit/pretrain/vit-large-p16_3rdparty_pt-64xb64_in1k-224_20210928-0001f9a1.pth
https://github.com/google-research/vision_transformer#available-vit-models
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45.2.2 ImageNet-1k

Model Pretrain resolu-
tion

Params(M) Flops(G) Top-1
(%)

Top-5
(%)

Con-
fig

Down-
load

ViT-B16* ImageNet-
21k

384x384 86.86 33.03 85.43 97.77 config model

ViT-B32* ImageNet-
21k

384x384 88.30 8.56 84.01 97.08 config model

ViT-L16* ImageNet-
21k

384x384 304.72 116.68 85.63 97.63 config model

ViT-B16
(IPU)

ImageNet-
21k

224x224 86.86 33.03 81.22 95.56 config model |
log

Models with * are converted from the official repo. The config files of these models are only for validation. We don’t
ensure these config files’ training accuracy and welcome you to contribute your reproduction results.
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https://github.com/open-mmlab/mmclassification/blob/master/configs/vision_transformer/vit-base-p16_ft-64xb64_in1k-384.py
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https://github.com/google-research/vision_transformer#available-vit-models
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FORTYSIX

WIDE-RESNET

Wide Residual Networks

46.1 Abstract

Deep residual networks were shown to be able to scale up to thousands of layers and still have improving performance.
However, each fraction of a percent of improved accuracy costs nearly doubling the number of layers, and so training
very deep residual networks has a problem of diminishing feature reuse, which makes these networks very slow to train.
To tackle these problems, in this paper we conduct a detailed experimental study on the architecture of ResNet blocks,
based on which we propose a novel architecture where we decrease depth and increase width of residual networks.
We call the resulting network structures wide residual networks (WRNs) and show that these are far superior over
their commonly used thin and very deep counterparts. For example, we demonstrate that even a simple 16-layer-deep
wide residual network outperforms in accuracy and efficiency all previous deep residual networks, including thousand-
layer-deep networks, achieving new state-of-the-art results on CIFAR, SVHN, COCO, and significant improvements
on ImageNet.

46.2 Results and models

46.2.1 ImageNet-1k

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
WRN-50* 68.88 11.44 78.48 94.08 config model
WRN-101* 126.89 22.81 78.84 94.28 config model
WRN-50 (timm)* 68.88 11.44 81.45 95.53 config model

Models with * are converted from the TorchVision and TIMM. The config files of these models are only for inference.
We don’t ensure these config files’ training accuracy and welcome you to contribute your reproduction results.
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https://arxiv.org/abs/1605.07146
https://github.com/open-mmlab/mmclassification/blob/master/configs/wrn/wide-resnet50_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/wrn/wide-resnet50_3rdparty_8xb32_in1k_20220304-66678344.pth
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https://download.openmmlab.com/mmclassification/v0/wrn/wide-resnet101_3rdparty_8xb32_in1k_20220304-8d5f9d61.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/wrn/wide-resnet50_timm_8xb32_in1k.py
https://download.openmmlab.com/mmclassification/v0/wrn/wide-resnet50_3rdparty-timm_8xb32_in1k_20220304-83ae4399.pth
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
https://github.com/rwightman/pytorch-image-models/blob/master
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FORTYSEVEN

PYTORCH TO ONNX (EXPERIMENTAL)

• Pytorch to ONNX (Experimental)

– How to convert models from Pytorch to ONNX

∗ Prerequisite

∗ Usage

∗ Description of all arguments:

– How to evaluate ONNX models with ONNX Runtime

∗ Prerequisite

∗ Usage

∗ Description of all arguments

∗ Results and Models

– List of supported models exportable to ONNX

– Reminders

– FAQs

47.1 How to convert models from Pytorch to ONNX

47.1.1 Prerequisite

1. Please refer to install for installation of MMClassification.

2. Install onnx and onnxruntime

pip install onnx onnxruntime==1.5.1
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47.1.2 Usage

python tools/deployment/pytorch2onnx.py \
${CONFIG_FILE} \
--checkpoint ${CHECKPOINT_FILE} \
--output-file ${OUTPUT_FILE} \
--shape ${IMAGE_SHAPE} \
--opset-version ${OPSET_VERSION} \
--dynamic-export \
--show \
--simplify \
--verify \

47.1.3 Description of all arguments:

• config : The path of a model config file.

• --checkpoint : The path of a model checkpoint file.

• --output-file: The path of output ONNX model. If not specified, it will be set to tmp.onnx.

• --shape: The height and width of input tensor to the model. If not specified, it will be set to 224 224.

• --opset-version : The opset version of ONNX. If not specified, it will be set to 11.

• --dynamic-export : Determines whether to export ONNX with dynamic input shape and output shapes. If
not specified, it will be set to False.

• --show: Determines whether to print the architecture of the exported model. If not specified, it will be set to
False.

• --simplify: Determines whether to simplify the exported ONNX model. If not specified, it will be set to
False.

• --verify: Determines whether to verify the correctness of an exported model. If not specified, it will be set to
False.

Example:

python tools/deployment/pytorch2onnx.py \
configs/resnet/resnet18_8xb16_cifar10.py \
--checkpoint checkpoints/resnet/resnet18_8xb16_cifar10.pth \
--output-file checkpoints/resnet/resnet18_8xb16_cifar10.onnx \
--dynamic-export \
--show \
--simplify \
--verify \
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47.2 How to evaluate ONNX models with ONNX Runtime

We prepare a tool tools/deployment/test.py to evaluate ONNX models with ONNXRuntime or TensorRT.

47.2.1 Prerequisite

• Install onnx and onnxruntime-gpu

pip install onnx onnxruntime-gpu

47.2.2 Usage

python tools/deployment/test.py \
${CONFIG_FILE} \
${ONNX_FILE} \
--backend ${BACKEND} \
--out ${OUTPUT_FILE} \
--metrics ${EVALUATION_METRICS} \
--metric-options ${EVALUATION_OPTIONS} \
--show
--show-dir ${SHOW_DIRECTORY} \
--cfg-options ${CFG_OPTIONS} \

47.2.3 Description of all arguments

• config: The path of a model config file.

• model: The path of a ONNX model file.

• --backend: Backend for input model to run and should be onnxruntime or tensorrt.

• --out: The path of output result file in pickle format.

• --metrics: Evaluation metrics, which depends on the dataset, e.g., “accuracy”, “precision”, “recall”,
“f1_score”, “support” for single label dataset, and “mAP”, “CP”, “CR”, “CF1”, “OP”, “OR”, “OF1” for multi-
label dataset.

• --show: Determines whether to show classifier outputs. If not specified, it will be set to False.

• --show-dir: Directory where painted images will be saved

• --metrics-options: Custom options for evaluation, the key-value pair in xxx=yyy format will be kwargs for
dataset.evaluate() function

• --cfg-options: Override some settings in the used config file, the key-value pair in xxx=yyy format will be
merged into config file.
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47.2.4 Results and Models

This part selects ImageNet for onnxruntime verification. ImageNet has multiple versions, but the most commonly used
one is ILSVRC 2012.

47.3 List of supported models exportable to ONNX

The table below lists the models that are guaranteed to be exportable to ONNX and runnable in ONNX Runtime.

Model Config Batch Inference Dynamic Shape Note
MobileNetV2 mobilenet-v2_8xb32_in1k.py Y Y

ResNet resnet18_8xb16_cifar10.py Y Y

ResNeXt resnext50-32x4d_8xb32_in1k.py Y Y

SE-ResNet seresnet50_8xb32_in1k.py Y Y

ShuffleNetV1 shufflenet-v1-1x_16xb64_in1k.py Y Y

ShuffleNetV2 shufflenet-v2-1x_16xb64_in1k.py Y Y

Notes:

• All models above are tested with Pytorch==1.6.0

47.4 Reminders

• If you meet any problem with the listed models above, please create an issue and it would be taken care of soon.
For models not included in the list, please try to dig a little deeper and debug a little bit more and hopefully solve
them by yourself.

47.5 FAQs

• None
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48.1 How to convert models from ONNX to TensorRT

48.1.1 Prerequisite

1. Please refer to install.md for installation of MMClassification from source.

2. Use our tool pytorch2onnx.md to convert the model from PyTorch to ONNX.

48.1.2 Usage

python tools/deployment/onnx2tensorrt.py \
${MODEL} \
--trt-file ${TRT_FILE} \
--shape ${IMAGE_SHAPE} \
--max-batch-size ${MAX_BATCH_SIZE} \
--workspace-size ${WORKSPACE_SIZE} \
--fp16 \
--show \
--verify \

Description of all arguments:

• model : The path of an ONNX model file.

• --trt-file: The Path of output TensorRT engine file. If not specified, it will be set to tmp.trt.

• --shape: The height and width of model input. If not specified, it will be set to 224 224.

• --max-batch-size: The max batch size of TensorRT model, should not be less than 1.
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• --fp16: Enable fp16 mode.

• --workspace-size : The required GPU workspace size in GiB to build TensorRT engine. If not specified, it
will be set to 1 GiB.

• --show: Determines whether to show the outputs of the model. If not specified, it will be set to False.

• --verify: Determines whether to verify the correctness of models between ONNXRuntime and TensorRT. If
not specified, it will be set to False.

Example:

python tools/deployment/onnx2tensorrt.py \
checkpoints/resnet/resnet18_b16x8_cifar10.onnx \
--trt-file checkpoints/resnet/resnet18_b16x8_cifar10.trt \
--shape 224 224 \
--show \
--verify \

48.2 List of supported models convertible to TensorRT

The table below lists the models that are guaranteed to be convertible to TensorRT.

Model Config Status
MobileNetV2 configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py Y
ResNet configs/resnet/resnet18_8xb16_cifar10.py Y
ResNeXt configs/resnext/resnext50-32x4d_8xb32_in1k.py Y
ShuffleNetV1 configs/shufflenet_v1/shufflenet-v1-1x_16xb64_in1k.py Y
ShuffleNetV2 configs/shufflenet_v2/shufflenet-v2-1x_16xb64_in1k.py Y

Notes:

• All models above are tested with Pytorch==1.6.0 and TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-
10.2.cudnn8.0

48.3 Reminders

• If you meet any problem with the listed models above, please create an issue and it would be taken care of soon.
For models not included in the list, we may not provide much help here due to the limited resources. Please try
to dig a little deeper and debug by yourself.

48.4 FAQs

• None
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49.1 How to convert models from Pytorch to TorchScript

49.1.1 Usage

python tools/deployment/pytorch2torchscript.py \
${CONFIG_FILE} \
--checkpoint ${CHECKPOINT_FILE} \
--output-file ${OUTPUT_FILE} \
--shape ${IMAGE_SHAPE} \
--verify \

49.1.2 Description of all arguments

• config : The path of a model config file.

• --checkpoint : The path of a model checkpoint file.

• --output-file: The path of output TorchScript model. If not specified, it will be set to tmp.pt.

• --shape: The height and width of input tensor to the model. If not specified, it will be set to 224 224.

• --verify: Determines whether to verify the correctness of an exported model. If not specified, it will be set to
False.

Example:

python tools/deployment/pytorch2torchscript.py \
configs/resnet/resnet18_8xb16_cifar10.py \
--checkpoint checkpoints/resnet/resnet18_8xb16_cifar10.pth \

(continues on next page)
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(continued from previous page)

--output-file checkpoints/resnet/resnet18_8xb16_cifar10.pt \
--verify \

Notes:

• All models are tested with Pytorch==1.8.1

49.2 Reminders

• For torch.jit.is_tracing() is only supported after v1.6. For users with pytorch v1.3-v1.5, we suggest early returning
tensors manually.

• If you meet any problem with the models in this repo, please create an issue and it would be taken care of soon.

49.3 FAQs

• None
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MODEL SERVING

In order to serve an MMClassification model with TorchServe, you can follow the steps:

50.1 1. Convert model from MMClassification to TorchServe

python tools/deployment/mmcls2torchserve.py ${CONFIG_FILE} ${CHECKPOINT_FILE} \
--output-folder ${MODEL_STORE} \
--model-name ${MODEL_NAME}

Note: ${MODEL_STORE} needs to be an absolute path to a folder.

Example:

python tools/deployment/mmcls2torchserve.py \
configs/resnet/resnet18_8xb32_in1k.py \
checkpoints/resnet18_8xb32_in1k_20210831-fbbb1da6.pth \
--output-folder ./checkpoints \
--model-name resnet18_in1k

50.2 2. Build mmcls-serve docker image

docker build -t mmcls-serve:latest docker/serve/

50.3 3. Run mmcls-serve

Check the official docs for running TorchServe with docker.

In order to run in GPU, you need to install nvidia-docker. You can omit the --gpus argument in order to run in GPU.

Example:

docker run --rm \
--cpus 8 \
--gpus device=0 \
-p8080:8080 -p8081:8081 -p8082:8082 \

(continues on next page)
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(continued from previous page)

--mount type=bind,source=`realpath ./checkpoints`,target=/home/model-server/model-store \
mmcls-serve:latest

Note: realpath ./checkpoints points to the absolute path of “./checkpoints”, and you can replace it with the
absolute path where you store torchserve models.

Read the docs about the Inference (8080), Management (8081) and Metrics (8082) APis

50.4 4. Test deployment

curl http://127.0.0.1:8080/predictions/${MODEL_NAME} -T demo/demo.JPEG

You should obtain a response similar to:

{
"pred_label": 58,
"pred_score": 0.38102269172668457,
"pred_class": "water snake"

}

And you can use test_torchserver.py to compare result of TorchServe and PyTorch, and visualize them.

python tools/deployment/test_torchserver.py ${IMAGE_FILE} ${CONFIG_FILE} ${CHECKPOINT_
→˓FILE} ${MODEL_NAME}
[--inference-addr ${INFERENCE_ADDR}] [--device ${DEVICE}]

Example:

python tools/deployment/test_torchserver.py \
demo/demo.JPEG \
configs/resnet/resnet18_8xb32_in1k.py \
checkpoints/resnet18_8xb32_in1k_20210831-fbbb1da6.pth \
resnet18_in1k
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• Pipeline Visualization

• Learning Rate Schedule Visualization

• Class Activation Map Visualization

• FAQs

51.1 Pipeline Visualization

python tools/visualizations/vis_pipeline.py \
${CONFIG_FILE} \
[--output-dir ${OUTPUT_DIR}] \
[--phase ${DATASET_PHASE}] \
[--number ${BUNBER_IMAGES_DISPLAY}] \
[--skip-type ${SKIP_TRANSFORM_TYPE}] \
[--mode ${DISPLAY_MODE}] \
[--show] \
[--adaptive] \
[--min-edge-length ${MIN_EDGE_LENGTH}] \
[--max-edge-length ${MAX_EDGE_LENGTH}] \
[--bgr2rgb] \
[--window-size ${WINDOW_SIZE}] \
[--cfg-options ${CFG_OPTIONS}]

Description of all arguments：

• config : The path of a model config file.

• --output-dir: The output path for visualized images. If not specified, it will be set to '', which means not to
save.

• --phase: Phase of visualizing dataset，must be one of [train, val, test]. If not specified, it will be set
to train.

• --number: The number of samples to visualized. If not specified, display all images in the dataset.

• --skip-type: The pipelines to be skipped. If not specified, it will be set to ['ToTensor', 'Normalize',
'ImageToTensor', 'Collect'].

• --mode: The display mode, can be one of [original, pipeline, concat]. If not specified, it will be set to
concat.

• --show: If set, display pictures in pop-up windows.
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• --adaptive: If set, adaptively resize images for better visualization.

• --min-edge-length: The minimum edge length, used when --adaptive is set. When any side of the picture
is smaller than ${MIN_EDGE_LENGTH}, the picture will be enlarged while keeping the aspect ratio unchanged,
and the short side will be aligned to ${MIN_EDGE_LENGTH}. If not specified, it will be set to 200.

• --max-edge-length: The maximum edge length, used when --adaptive is set. When any side of the picture
is larger than ${MAX_EDGE_LENGTH}, the picture will be reduced while keeping the aspect ratio unchanged, and
the long side will be aligned to ${MAX_EDGE_LENGTH}. If not specified, it will be set to 1000.

• --bgr2rgb: If set, flip the color channel order of images.

• --window-size: The shape of the display window. If not specified, it will be set to 12*7. If used, it must be in
the format 'W*H'.

• --cfg-options : Modifications to the configuration file, refer to Tutorial 1: Learn about Configs.

Note:

1. If the --mode is not specified, it will be set to concat as default, get the pictures stitched together by original
pictures and transformed pictures; if the --mode is set to original, get the original pictures; if the --mode is
set to transformed, get the transformed pictures; if the --mode is set to pipeline, get all the intermediate
images through the pipeline.

2. When --adaptive option is set, images that are too large or too small will be automatically adjusted, you can
use --min-edge-length and --max-edge-length to set the adjust size.

Examples：

1. In ‘original’ mode, visualize 100 original pictures in the CIFAR100 validation set, then display and save them
in the ./tmp folder：

python ./tools/visualizations/vis_pipeline.py configs/resnet/resnet50_8xb16_cifar100.py -
→˓-phase val --output-dir tmp --mode original --number 100 --show --adaptive --bgr2rgb

2. In ‘transformed’ mode, visualize all the transformed pictures of the ImageNet training set and display them in
pop-up windows：

python ./tools/visualizations/vis_pipeline.py ./configs/resnet/resnet50_8xb32_in1k.py --
→˓show --mode transformed

3. In ‘concat’ mode, visualize 10 pairs of origin and transformed images for comparison in the ImageNet train set
and save them in the ./tmp folder：

python ./tools/visualizations/vis_pipeline.py configs/swin_transformer/swin_base_224_
→˓b16x64_300e_imagenet.py --phase train --output-dir tmp --number 10 --adaptive

4. In ‘pipeline’ mode, visualize all the intermediate pictures in the ImageNet train set through the pipeline：

python ./tools/visualizations/vis_pipeline.py configs/swin_transformer/swin_base_224_
→˓b16x64_300e_imagenet.py --phase train --adaptive --mode pipeline --show
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51.2 Learning Rate Schedule Visualization

python tools/visualizations/vis_lr.py \
${CONFIG_FILE} \
--dataset-size ${DATASET_SIZE} \
--ngpus ${NUM_GPUs}
--save-path ${SAVE_PATH} \
--title ${TITLE} \
--style ${STYLE} \
--window-size ${WINDOW_SIZE}
--cfg-options

Description of all arguments：

• config : The path of a model config file.

• dataset-size : The size of the datasets. If set，build_dataset will be skipped and ${DATASET_SIZE} will
be used as the size. Default to use the function build_dataset.

• ngpus : The number of GPUs used in training, default to be 1.

• save-path : The learning rate curve plot save path, default not to save.

• title : Title of figure. If not set, default to be config file name.

• style : Style of plt. If not set, default to be whitegrid.

• window-size: The shape of the display window. If not specified, it will be set to 12*7. If used, it must be in
the format 'W*H'.

• cfg-options : Modifications to the configuration file, refer to Tutorial 1: Learn about Configs.

Note: Loading annotations maybe consume much time, you can directly specify the size of the dataset with
dataset-size to save time.

Examples：

python tools/visualizations/vis_lr.py configs/resnet/resnet50_b16x8_cifar100.py

When using ImageNet, directly specify the size of ImageNet, as below:

python tools/visualizations/vis_lr.py configs/repvgg/repvgg-B3g4_4xb64-autoaug-lbs-mixup-
→˓coslr-200e_in1k.py --dataset-size 1281167 --ngpus 4 --save-path ./repvgg-B3g4_4xb64-lr.
→˓jpg

51.3 Class Activation Map Visualization

MMClassification provides tools\visualizations\vis_cam.py tool to visualize class activation map. Please use
pip install "grad-cam>=1.3.6" command to install pytorch-grad-cam.

The supported methods are as follows:
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Method What it does
GradCAM Weight the 2D activations by the average gradient
Grad-
CAM++

Like GradCAM but uses second order gradients

XGradCAM Like GradCAM but scale the gradients by the normalized activations
EigenCAM Takes the first principle component of the 2D Activations (no class discrimination, but seems to give

great results)
EigenGrad-
CAM

Like EigenCAM but with class discrimination: First principle component of Activations*Grad.
Looks like GradCAM, but cleaner

LayerCAM Spatially weight the activations by positive gradients. Works better especially in lower layers

Command：

python tools/visualizations/vis_cam.py \
${IMG} \
${CONFIG_FILE} \
${CHECKPOINT} \
[--target-layers ${TARGET-LAYERS}] \
[--preview-model] \
[--method ${METHOD}] \
[--target-category ${TARGET-CATEGORY}] \
[--save-path ${SAVE_PATH}] \
[--vit-like] \
[--num-extra-tokens ${NUM-EXTRA-TOKENS}]
[--aug_smooth] \
[--eigen_smooth] \
[--device ${DEVICE}] \
[--cfg-options ${CFG-OPTIONS}]

Description of all arguments：

• img : The target picture path.

• config : The path of the model config file.

• checkpoint : The path of the checkpoint.

• --target-layers : The target layers to get activation maps, one or more network layers can be specified. If
not set, use the norm layer of the last block.

• --preview-model : Whether to print all network layer names in the model.

• --method : Visualization method, supports GradCAM, GradCAM++, XGradCAM, EigenCAM, EigenGradCAM,
LayerCAM, which is case insensitive. Defaults to GradCAM.

• --target-category : Target category, if not set, use the category detected by the given model.

• --save-path : The path to save the CAM visualization image. If not set, the CAM image will not be saved.

• --vit-like : Whether the network is ViT-like network.

• --num-extra-tokens : The number of extra tokens in ViT-like backbones. If not set, use num_extra_tokens
the backbone.

• --aug_smooth : Whether to use TTA(Test Time Augment) to get CAM.

• --eigen_smooth : Whether to use the principal component to reduce noise.

• --device : The computing device used. Default to ‘cpu’.
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• --cfg-options : Modifications to the configuration file, refer to Tutorial 1: Learn about Configs.

Note: The argument --preview-model can view all network layers names in the given model. It will be helpful if
you know nothing about the model layers when setting --target-layers.

Examples(CNN)：

Here are some examples of target-layers in ResNet-50, which can be any module or layer:

• 'backbone.layer4' means the output of the forth ResLayer.

• 'backbone.layer4.2' means the output of the third BottleNeck block in the forth ResLayer.

• 'backbone.layer4.2.conv1' means the output of the conv1 layer in above BottleNeck block.

Note: For ModuleList or Sequential, you can also use the index to specify which sub-module is the target layer.

For example, the backbone.layer4[-1] is the same as backbone.layer4.2 since layer4 is a Sequential with
three sub-modules.

1. Use different methods to visualize CAM for ResNet50, the target-category is the predicted result by the
given checkpoint, using the default target-layers.

python tools/visualizations/vis_cam.py \
demo/bird.JPEG \
configs/resnet/resnet50_8xb32_in1k.py \
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_batch256_

→˓imagenet_20200708-cfb998bf.pth \
--method GradCAM
# GradCAM++, XGradCAM, EigenCAM, EigenGradCAM, LayerCAM

Image GradCAM GradCAM++ EigenGradCAM LayerCAM

2. Use different target-category to get CAM from the same picture. In ImageNet dataset, the category 238 is
‘Greater Swiss Mountain dog’, the category 281 is ‘tabby, tabby cat’.

python tools/visualizations/vis_cam.py \
demo/cat-dog.png configs/resnet/resnet50_8xb32_in1k.py \
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_batch256_

→˓imagenet_20200708-cfb998bf.pth \
--target-layers 'backbone.layer4.2' \
--method GradCAM \
--target-category 238
# --target-category 281

Category Image GradCAM XGradCAM LayerCAM
Dog

Cat
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3. Use --eigen-smooth and --aug-smooth to improve visual effects.

python tools/visualizations/vis_cam.py \
demo/dog.jpg \
configs/mobilenet_v3/mobilenet-v3-large_8xb32_in1k.py \
https://download.openmmlab.com/mmclassification/v0/mobilenet_v3/convert/

→˓mobilenet_v3_large-3ea3c186.pth \
--target-layers 'backbone.layer16' \
--method LayerCAM \
--eigen-smooth --aug-smooth

Image LayerCAM eigen-smooth aug-smooth eigen&aug

Examples(Transformer)：

Here are some examples:

• 'backbone.norm3' for Swin-Transformer;

• 'backbone.layers[-1].ln1' for ViT;

For ViT-like networks, such as ViT, T2T-ViT and Swin-Transformer, the features are flattened. And for drawing the
CAM, we need to specify the --vit-like argument to reshape the features into square feature maps.

Besides the flattened features, some ViT-like networks also add extra tokens like the class token in ViT and T2T-ViT,
and the distillation token in DeiT. In these networks, the final classification is done on the tokens computed in the last
attention block, and therefore, the classification score will not be affected by other features and the gradient of the
classification score with respect to them, will be zero. Therefore, you shouldn’t use the output of the last attention
block as the target layer in these networks.

To exclude these extra tokens, we need know the number of extra tokens. Almost all transformer-based backbones in
MMClassification have the num_extra_tokens attribute. If you want to use this tool in a new or third-party network
that don’t have the num_extra_tokens attribute, please specify it the --num-extra-tokens argument.

1. Visualize CAM for Swin Transformer, using default target-layers:

python tools/visualizations/vis_cam.py \
demo/bird.JPEG \
configs/swin_transformer/swin-tiny_16xb64_in1k.py \
https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_tiny_

→˓224_b16x64_300e_imagenet_20210616_090925-66df6be6.pth \
--vit-like

2. Visualize CAM for Vision Transformer(ViT):

python tools/visualizations/vis_cam.py \
demo/bird.JPEG \
configs/vision_transformer/vit-base-p16_ft-64xb64_in1k-384.py \
https://download.openmmlab.com/mmclassification/v0/vit/finetune/vit-base-p16_

→˓in21k-pre-3rdparty_ft-64xb64_in1k-384_20210928-98e8652b.pth \
--vit-like \
--target-layers 'backbone.layers[-1].ln1'

3. Visualize CAM for T2T-ViT:
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python tools/visualizations/vis_cam.py \
demo/bird.JPEG \
configs/t2t_vit/t2t-vit-t-14_8xb64_in1k.py \
https://download.openmmlab.com/mmclassification/v0/t2t-vit/t2t-vit-t-14_

→˓3rdparty_8xb64_in1k_20210928-b7c09b62.pth \
--vit-like \
--target-layers 'backbone.encoder[-1].ln1'

Image ResNet50 ViT Swin T2T-ViT

51.4 FAQs

• None
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CHAPTER

FIFTYTWO

ANALYSIS

• Log Analysis

– Plot Curves

– Calculate Training Time

• Result Analysis

– Evaluate Results

– View Typical Results

• Model Complexity

• FAQs

52.1 Log Analysis

52.1.1 Plot Curves

tools/analysis_tools/analyze_logs.py plots curves of given keys according to the log files.

python tools/analysis_tools/analyze_logs.py plot_curve \
${JSON_LOGS} \
[--keys ${KEYS}] \
[--title ${TITLE}] \
[--legend ${LEGEND}] \
[--backend ${BACKEND}] \
[--style ${STYLE}] \
[--out ${OUT_FILE}] \
[--window-size ${WINDOW_SIZE}]

Description of all arguments：

• json_logs : The paths of the log files, separate multiple files by spaces.

• --keys : The fields of the logs to analyze, separate multiple keys by spaces. Defaults to ‘loss’.

• --title : The title of the figure. Defaults to use the filename.

• --legend : The names of legend, the number of which must be equal to len(${JSON_LOGS}) *
len(${KEYS}). Defaults to use "${JSON_LOG}-${KEYS}".

• --backend : The backend of matplotlib. Defaults to auto selected by matplotlib.

• --style : The style of the figure. Default to whitegrid.
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• --out : The path of the output picture. If not set, the figure won’t be saved.

• --window-size: The shape of the display window. The format should be 'W*H'. Defaults to '12*7'.

Note: The --style option depends on seaborn package, please install it before setting it.

Examples:

• Plot the loss curve in training.

python tools/analysis_tools/analyze_logs.py plot_curve your_log_json --keys loss --
→˓legend loss

• Plot the top-1 accuracy and top-5 accuracy curves, and save the figure to results.jpg.

python tools/analysis_tools/analyze_logs.py plot_curve your_log_json --keys␣
→˓accuracy_top-1 accuracy_top-5 --legend top1 top5 --out results.jpg

• Compare the top-1 accuracy of two log files in the same figure.

python tools/analysis_tools/analyze_logs.py plot_curve log1.json log2.json --keys␣
→˓accuracy_top-1 --legend exp1 exp2

Note: The tool will automatically select to find keys in training logs or validation logs according to the keys. Therefore,
if you add a custom evaluation metric, please also add the key to TEST_METRICS in this tool.

52.1.2 Calculate Training Time

tools/analysis_tools/analyze_logs.py can also calculate the training time according to the log files.

python tools/analysis_tools/analyze_logs.py cal_train_time \
${JSON_LOGS}
[--include-outliers]

Description of all arguments:

• json_logs : The paths of the log files, separate multiple files by spaces.

• --include-outliers : If set, include the first iteration in each epoch (Sometimes the time of first iterations is
longer).

Example:

python tools/analysis_tools/analyze_logs.py cal_train_time work_dirs/some_exp/20200422_
→˓153324.log.json

The output is expected to be like the below.

-----Analyze train time of work_dirs/some_exp/20200422_153324.log.json-----
slowest epoch 68, average time is 0.3818
fastest epoch 1, average time is 0.3694
time std over epochs is 0.0020
average iter time: 0.3777 s/iter
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52.2 Result Analysis

With the --out argument in tools/test.py, we can save the inference results of all samples as a file. And with this
result file, we can do further analysis.

52.2.1 Evaluate Results

tools/analysis_tools/eval_metric.py can evaluate metrics again.

python tools/analysis_tools/eval_metric.py \
${CONFIG} \
${RESULT} \
[--metrics ${METRICS}] \
[--cfg-options ${CFG_OPTIONS}] \
[--metric-options ${METRIC_OPTIONS}]

Description of all arguments:

• config : The path of the model config file.

• result: The Output result file in json/pickle format from tools/test.py.

• --metrics : Evaluation metrics, the acceptable values depend on the dataset.

• --cfg-options: If specified, the key-value pair config will be merged into the config file, for more details
please refer to Tutorial 1: Learn about Configs

• --metric-options: If specified, the key-value pair arguments will be passed to the metric_options argu-
ment of dataset’s evaluate function.

Note: In tools/test.py, we support using --out-items option to select which kind of results will be saved. Please
ensure the result file includes “class_scores” to use this tool.

Examples:

python tools/analysis_tools/eval_metric.py configs/t2t_vit/t2t-vit-t-14_8xb64_in1k.py␣
→˓your_result.pkl --metrics accuracy --metric-options "topk=(1,5)"

52.2.2 View Typical Results

tools/analysis_tools/analyze_results.py can save the images with the highest scores in successful or failed
prediction.

python tools/analysis_tools/analyze_results.py \
${CONFIG} \
${RESULT} \
[--out-dir ${OUT_DIR}] \
[--topk ${TOPK}] \
[--cfg-options ${CFG_OPTIONS}]

Description of all arguments:

• config : The path of the model config file.
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• result: Output result file in json/pickle format from tools/test.py.

• --out-dir: Directory to store output files.

• --topk: The number of images in successful or failed prediction with the highest topk scores to save. If not
specified, it will be set to 20.

• --cfg-options: If specified, the key-value pair config will be merged into the config file, for more details
please refer to Tutorial 1: Learn about Configs

Note: In tools/test.py, we support using --out-items option to select which kind of results will be saved. Please
ensure the result file includes “pred_score”, “pred_label” and “pred_class” to use this tool.

Examples:

python tools/analysis_tools/analyze_results.py \
configs/resnet/resnet50_b32x8_imagenet.py \
result.pkl \
--out-dir results \
--topk 50

52.3 Model Complexity

52.3.1 Get the FLOPs and params (experimental)

We provide a script adapted from flops-counter.pytorch to compute the FLOPs and params of a given model.

python tools/analysis_tools/get_flops.py ${CONFIG_FILE} [--shape ${INPUT_SHAPE}]

Description of all arguments:

• config : The path of the model config file.

• --shape: Input size, support single value or double value parameter, such as --shape 256 or --shape 224
256. If not set, default to be 224 224.

You will get a result like this.

==============================
Input shape: (3, 224, 224)
Flops: 4.12 GFLOPs
Params: 25.56 M
==============================

Warning: This tool is still experimental and we do not guarantee that the number is correct. You may well use
the result for simple comparisons, but double-check it before you adopt it in technical reports or papers.

• FLOPs are related to the input shape while parameters are not. The default input shape is (1, 3, 224, 224).

• Some operators are not counted into FLOPs like GN and custom operators. Refer to mmcv.cnn.
get_model_complexity_info() for details.
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52.4 FAQs

• None
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CHAPTER

FIFTYTHREE

MISCELLANEOUS

• Print the entire config

• Verify Dataset

• FAQs

53.1 Print the entire config

tools/misc/print_config.py prints the whole config verbatim, expanding all its imports.

python tools/misc/print_config.py ${CONFIG} [--cfg-options ${CFG_OPTIONS}]

Description of all arguments:

• config : The path of the model config file.

• --cfg-options: If specified, the key-value pair config will be merged into the config file, for more details
please refer to Tutorial 1: Learn about Configs

Examples:

python tools/misc/print_config.py configs/t2t_vit/t2t-vit-t-14_8xb64_in1k.py

53.2 Verify Dataset

tools/misc/verify_dataset.py can verify dataset, check whether there are broken pictures in the given dataset.

python tools/misc/verify_dataset.py \
${CONFIG} \
[--out-path ${OUT-PATH}] \
[--phase ${PHASE}] \
[--num-process ${NUM-PROCESS}]
[--cfg-options ${CFG_OPTIONS}]

Description of all arguments:

• config : The path of the model config file.

• --out-path : The path to save the verification result, if not set, defaults to ‘brokenfiles.log’.

• --phase : Phase of dataset to verify, accept “train” “test” and “val”, if not set, defaults to “train”.
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• --num-process : number of process to use, if not set, defaults to 1.

• --cfg-options: If specified, the key-value pair config will be merged into the config file, for more details
please refer to Tutorial 1: Learn about Configs

Examples:

python tools/misc/verify_dataset.py configs/t2t_vit/t2t-vit-t-14_8xb64_in1k.py --out-
→˓path broken_imgs.log --phase val --num-process 8

53.3 FAQs

• None
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FIFTYFOUR

CONTRIBUTING TO OPENMMLAB

All kinds of contributions are welcome, including but not limited to the following.

• Fix typo or bugs

• Add documentation or translate the documentation into other languages

• Add new features and components

54.1 Workflow

1. fork and pull the latest OpenMMLab repository (MMClassification)

2. checkout a new branch (do not use master branch for PRs)

3. commit your changes

4. create a PR

Note: If you plan to add some new features that involve large changes, it is encouraged to open an issue for discussion
first.

54.2 Code style

54.2.1 Python

We adopt PEP8 as the preferred code style.

We use the following tools for linting and formatting:

• flake8: A wrapper around some linter tools.

• isort: A Python utility to sort imports.

• yapf: A formatter for Python files.

• codespell: A Python utility to fix common misspellings in text files.

• mdformat: Mdformat is an opinionated Markdown formatter that can be used to enforce a consistent style in
Markdown files.

• docformatter: A formatter to format docstring.
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Style configurations can be found in setup.cfg.

We use pre-commit hook that checks and formats for flake8, yapf, isort, trailing whitespaces, markdown
files, fixes end-of-files, double-quoted-strings, python-encoding-pragma, mixed-line-ending, sorts
requirments.txt automatically on every commit. The config for a pre-commit hook is stored in .pre-commit-config.

After you clone the repository, you will need to install initialize pre-commit hook.

pip install -U pre-commit

From the repository folder

pre-commit install

After this on every commit check code linters and formatter will be enforced.

Important: Before you create a PR, make sure that your code lints and is formatted by yapf.

54.2.2 C++ and CUDA

We follow the Google C++ Style Guide.
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CHAPTER

FIFTYFIVE

MMCLS.APIS

These are some high-level APIs for classification tasks.

mmcls.apis

• Train

• Test

• Inference

55.1 Train

55.2 Test

55.3 Inference
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CHAPTER

FIFTYSIX

MMCLS.CORE

This package includes some runtime components. These components are useful in classification tasks but not supported
by MMCV yet.

Note: Some components may be moved to MMCV in the future.

mmcls.core

• Evaluation

• Hook

• Optimizers

56.1 Evaluation

Evaluation metrics calculation functions

56.2 Hook

56.3 Optimizers
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CHAPTER

FIFTYSEVEN

MMCLS.MODELS

The models package contains several sub-packages for addressing the different components of a model.

• Classifier: The top-level module which defines the whole process of a classification model.

• Backbones: Usually a feature extraction network, e.g., ResNet, MobileNet.

• Necks: The component between backbones and heads, e.g., GlobalAveragePooling.

• Heads: The component for specific tasks. In MMClassification, we provides heads for classification.

• Losses: Loss functions.

57.1 Classifier

57.2 Backbones

57.3 Necks

57.4 Heads
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57.5 Losses
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FIFTYEIGHT

MMCLS.MODELS.UTILS

This package includes some helper functions and common components used in various networks.

mmcls.models.utils

• Common Components

• Helper Functions

– channel_shuffle

– make_divisible

– to_ntuple

– is_tracing

58.1 Common Components

58.2 Helper Functions

58.2.1 channel_shuffle

58.2.2 make_divisible

58.2.3 to_ntuple

58.2.4 is_tracing
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CHAPTER

FIFTYNINE

MMCLS.DATASETS

The datasets package contains several usual datasets for image classification tasks and some dataset wrappers.

59.1 Custom Dataset

59.2 ImageNet

59.3 CIFAR

59.4 MNIST

59.5 VOC

59.6 StanfordCars Cars

59.7 Base classes

59.8 Dataset Wrappers
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CHAPTER

SIXTY

DATA TRANSFORMATIONS

In MMClassification, the data preparation and the dataset is decomposed. The datasets only define how to get samples’
basic information from the file system. These basic information includes the ground-truth label and raw images data /
the paths of images.

To prepare the inputs data, we need to do some transformations on these basic information. These transformations in-
cludes loading, preprocessing and formatting. And a series of data transformations makes up a data pipeline. Therefore,
you can find the a pipeline argument in the configs of dataset, for example:

img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)

train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', size=224),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])

]
test_pipeline = [

dict(type='LoadImageFromFile'),
dict(type='Resize', size=256),
dict(type='CenterCrop', crop_size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])

]

data = dict(
train=dict(..., pipeline=train_pipeline),
val=dict(..., pipeline=test_pipeline),
test=dict(..., pipeline=test_pipeline),

)

Every item of a pipeline list is one of the following data transformations class. And if you want to add a custom data
transformation class, the tutorial Custom Data Pipelines will help you.

mmcls.datasets.pipelines

• Loading
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– LoadImageFromFile

• Preprocessing and Augmentation

– CenterCrop

– Lighting

– Normalize

– Pad

– Resize

– RandomCrop

– RandomErasing

– RandomFlip

– RandomGrayscale

– RandomResizedCrop

– ColorJitter

– Composed Augmentation

• Formatting

– Collect

– ImageToTensor

– ToNumpy

– ToPIL

– ToTensor

– Transpose
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60.1 Loading

60.1.1 LoadImageFromFile

60.2 Preprocessing and Augmentation

60.2.1 CenterCrop

60.2.2 Lighting

60.2.3 Normalize

60.2.4 Pad

60.2.5 Resize

60.2.6 RandomCrop

60.2.7 RandomErasing

60.2.8 RandomFlip

60.2.9 RandomGrayscale

60.2.10 RandomResizedCrop

60.2.11 ColorJitter

60.2.12 Composed Augmentation

Composed augmentation is a kind of methods which compose a series of data augmentation transformations, such as
AutoAugment and RandAugment.

In composed augmentation, we need to specify several data transformations or several groups of data transformations
(The policies argument) as the random sampling space. These data transformations are chosen from the below table.
In addition, we provide some preset policies in this folder.
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60.3 Formatting

60.3.1 Collect

60.3.2 ImageToTensor

60.3.3 ToNumpy

60.3.4 ToPIL

60.3.5 ToTensor

60.3.6 Transpose
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SIXTYONE

BATCH AUGMENTATION

Batch augmentation is the augmentation which involve multiple samples, such as Mixup and CutMix.

In MMClassification, these batch augmentation is used as a part of Classifier. A typical usage is as below:

model = dict(
backbone = ...,
neck = ...,
head = ...,
train_cfg=dict(augments=[

dict(type='BatchMixup', alpha=0.8, prob=0.5, num_classes=num_classes),
dict(type='BatchCutMix', alpha=1.0, prob=0.5, num_classes=num_classes),

]))
)

61.1 Mixup

61.2 CutMix

61.3 ResizeMix
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SIXTYTWO

MMCLS.UTILS

These are some useful help function in the utils package.
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CHAPTER

SIXTYTHREE

CHANGELOG

63.1 v0.25.0(06/12/2022)

63.1.1 Highlights

• Support MLU backend.

63.1.2 New Features

• Support MLU backend. (#1159)

• Support Activation Checkpointing for ConvNeXt. (#1152)

63.1.3 Improvements

• Add dist_train_arm.sh for ARM device and update NPU results. (#1218)

63.1.4 Bug Fixes

• Fix a bug caused MMClsWandbHook stuck. (#1242)

• Fix the redundant device_ids in tools/test.py. (#1215)

63.1.5 Docs Update

• Add version banner and version warning in master docs. (#1216)

• Update NPU support doc. (#1198)

• Fixed typo in pytorch2torchscript.md. (#1173)

• Fix typo in miscellaneous.md. (#1137)

• further detail for the doc for ClassBalancedDataset. (#901)
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63.2 v0.24.1(31/10/2022)

63.2.1 New Features

• Support mmcls with NPU backend. (#1072)

63.2.2 Bug Fixes

• Fix performance issue in convnext DDP train. (#1098)

63.3 v0.24.0(30/9/2022)

63.3.1 Highlights

• Support HorNet, EfficientFormerm, SwinTransformer V2 and MViT backbones.

• Support Standford Cars dataset.

63.3.2 New Features

• Support HorNet Backbone. (#1013)

• Support EfficientFormer. (#954)

• Support Stanford Cars dataset. (#893)

• Support CSRA head. (#881)

• Support Swin Transform V2. (#799)

• Support MViT and add checkpoints. (#924)

63.3.3 Improvements

• [Improve] replace loop of progressbar in api/test. (#878)

• [Enhance] RepVGG for YOLOX-PAI. (#1025)

• [Enhancement] Update VAN. (#1017)

• [Refactor] Re-write get_sinusoid_encoding from third-party implementation. (#965)

• [Improve] Upgrade onnxsim to v0.4.0. (#915)

• [Improve] Fixed typo in RepVGG. (#985)

• [Improve] Using train_step instead of forward in PreciseBNHook (#964)

• [Improve] Use forward_dummy to calculate FLOPS. (#953)
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63.3.4 Bug Fixes

• Fix warning with torch.meshgrid. (#860)

• Add matplotlib minimum version requriments. (#909)

• val loader should not drop last by default. (#857)

• Fix config.device bug in toturial. (#1059)

• Fix attenstion clamp max params (#1034)

• Fix device mismatch in Swin-v2. (#976)

• Fix the output position of Swin-Transformer. (#947)

63.3.5 Docs Update

• Fix typo in config.md. (#827)

• Add version for torchvision to avoide error. (#903)

• Fixed typo for --out-dir option of analyze_results.py. (#898)

• Refine the docstring of RegNet (#935)

63.4 v0.23.2(28/7/2022)

63.4.1 New Features

• Support MPS device. (#894)

63.4.2 Bug Fixes

• Fix a bug in Albu which caused crashing. (#918)

63.5 v0.23.1(2/6/2022)

63.5.1 New Features

• Dedicated MMClsWandbHook for MMClassification (Weights and Biases Integration) (#764)

63.5.2 Improvements

• Use mdformat instead of markdownlint to format markdown. (#844)
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63.5.3 Bug Fixes

• Fix wrong --local_rank.

63.5.4 Docs Update

• Update install tutorials. (#854)

• Fix wrong link in README. (#835)

63.6 v0.23.0(1/5/2022)

63.6.1 New Features

• Support DenseNet. (#750)

• Support VAN. (#739)

63.6.2 Improvements

• Support training on IPU and add fine-tuning configs of ViT. (#723)

63.6.3 Docs Update

• New style API reference, and easier to use! Welcome view it. (#774)

63.7 v0.22.1(15/4/2022)

63.7.1 New Features

• [Feature] Support resize relative position embedding in SwinTransformer. (#749)

• [Feature] Add PoolFormer backbone and checkpoints. (#746)

63.7.2 Improvements

• [Enhance] Improve CPE performance by reduce memory copy. (#762)

• [Enhance] Add extra dataloader settings in configs. (#752)
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63.8 v0.22.0(30/3/2022)

63.8.1 Highlights

• Support a series of CSP Network, such as CSP-ResNet, CSP-ResNeXt and CSP-DarkNet.

• A new CustomDataset class to help you build dataset of yourself!

• Support ConvMixer, RepMLP and new dataset - CUB dataset.

63.8.2 New Features

• [Feature] Add CSPNet and backbone and checkpoints (#735)

• [Feature] Add CustomDataset. (#738)

• [Feature] Add diff seeds to diff ranks. (#744)

• [Feature] Support ConvMixer. (#716)

• [Feature] Our dist_train & dist_test tools support distributed training on multiple machines. (#734)

• [Feature] Add RepMLP backbone and checkpoints. (#709)

• [Feature] Support CUB dataset. (#703)

• [Feature] Support ResizeMix. (#676)

63.8.3 Improvements

• [Enhance] Use --a-b instead of --a_b in arguments. (#754)

• [Enhance] Add get_cat_ids and get_gt_labels to KFoldDataset. (#721)

• [Enhance] Set torch seed in worker_init_fn. (#733)

63.8.4 Bug Fixes

• [Fix] Fix the discontiguous output feature map of ConvNeXt. (#743)

63.8.5 Docs Update

• [Docs] Add brief installation steps in README for copy&paste. (#755)

• [Docs] fix logo url link from mmocr to mmcls. (#732)
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63.9 v0.21.0(04/03/2022)

63.9.1 Highlights

• Support ResNetV1c and Wide-ResNet, and provide pre-trained models.

• Support dynamic input shape for ViT-based algorithms. Now our ViT, DeiT, Swin-Transformer and T2T-ViT
support forwarding with any input shape.

• Reproduce training results of DeiT. And our DeiT-T and DeiT-S have higher accuracy comparing with the official
weights.

63.9.2 New Features

• Add ResNetV1c. (#692)

• Support Wide-ResNet. (#715)

• Support gem pooling (#677)

63.9.3 Improvements

• Reproduce training results of DeiT. (#711)

• Add ConvNeXt pretrain models on ImageNet-1k. (#707)

• Support dynamic input shape for ViT-based algorithms. (#706)

• Add evaluate function for ConcatDataset. (#650)

• Enhance vis-pipeline tool. (#604)

• Return code 1 if scripts runs failed. (#694)

• Use PyTorch official one_hot to implement convert_to_one_hot. (#696)

• Add a new pre-commit-hook to automatically add a copyright. (#710)

• Add deprecation message for deploy tools. (#697)

• Upgrade isort pre-commit hooks. (#687)

• Use --gpu-id instead of --gpu-ids in non-distributed multi-gpu training/testing. (#688)

• Remove deprecation. (#633)

63.9.4 Bug Fixes

• Fix Conformer forward with irregular input size. (#686)

• Add dist.barrier to fix a bug in directory checking. (#666)
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63.10 v0.20.1(07/02/2022)

63.10.1 Bug Fixes

• Fix the MMCV dependency version.

63.11 v0.20.0(30/01/2022)

63.11.1 Highlights

• Support K-fold cross-validation. The tutorial will be released later.

• Support HRNet, ConvNeXt, Twins and EfficientNet.

• Support model conversion from PyTorch to Core-ML by a tool.

63.11.2 New Features

• Support K-fold cross-validation. (#563)

• Support HRNet and add pre-trained models. (#660)

• Support ConvNeXt and add pre-trained models. (#670)

• Support Twins and add pre-trained models. (#642)

• Support EfficientNet and add pre-trained models.(#649)

• Support features_only option in TIMMBackbone. (#668)

• Add conversion script from pytorch to Core-ML model. (#597)

63.11.3 Improvements

• New-style CPU training and inference. (#674)

• Add setup multi-processing both in train and test. (#671)

• Rewrite channel split operation in ShufflenetV2. (#632)

• Deprecate the support for “python setup.py test”. (#646)

• Support single-label, softmax, custom eps by asymmetric loss. (#609)

• Save class names in best checkpoint created by evaluation hook. (#641)
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63.11.4 Bug Fixes

• Fix potential unexcepted behaviors if metric_options is not specified in multi-label evaluation. (#647)

• Fix API changes in pytorch-grad-cam&gt;=1.3.7. (#656)

• Fix bug which breaks cal_train_time in analyze_logs.py. (#662)

63.11.5 Docs Update

• Update README in configs according to OpenMMLab standard. (#672)

• Update installation guide and README. (#624)

63.12 v0.19.0(31/12/2021)

63.12.1 Highlights

• The feature extraction function has been enhanced. See #593 for more details.

• Provide the high-acc ResNet-50 training settings from ResNet strikes back.

• Reproduce the training accuracy of T2T-ViT & RegNetX, and provide self-training checkpoints.

• Support DeiT & Conformer backbone and checkpoints.

• Provide a CAM visualization tool based on pytorch-grad-cam, and detailed user guide!

63.12.2 New Features

• Support Precise BN. (#401)

• Add CAM visualization tool. (#577)

• Repeated Aug and Sampler Registry. (#588)

• Add DeiT backbone and checkpoints. (#576)

• Support LAMB optimizer. (#591)

• Implement the conformer backbone. (#494)

• Add the frozen function for Swin Transformer model. (#574)

• Support using checkpoint in Swin Transformer to save memory. (#557)

63.12.3 Improvements

• [Reproduction] Reproduce RegNetX training accuracy. (#587)

• [Reproduction] Reproduce training results of T2T-ViT. (#610)

• [Enhance] Provide high-acc training settings of ResNet. (#572)

• [Enhance] Set a random seed when the user does not set a seed. (#554)

• [Enhance] Added NumClassCheckHook and unit tests. (#559)

• [Enhance] Enhance feature extraction function. (#593)
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• [Enhance] Improve efficiency of precision, recall, f1_score and support. (#595)

• [Enhance] Improve accuracy calculation performance. (#592)

• [Refactor] Refactor analysis_log.py. (#529)

• [Refactor] Use new API of matplotlib to handle blocking input in visualization. (#568)

• [CI] Cancel previous runs that are not completed. (#583)

• [CI] Skip build CI if only configs or docs modification. (#575)

63.12.4 Bug Fixes

• Fix test sampler bug. (#611)

• Try to create a symbolic link, otherwise copy. (#580)

• Fix a bug for multiple output in swin transformer. (#571)

63.12.5 Docs Update

• Update mmcv, torch, cuda version in Dockerfile and docs. (#594)

• Add analysis&misc docs. (#525)

• Fix docs build dependency. (#584)

63.13 v0.18.0(30/11/2021)

63.13.1 Highlights

• Support MLP-Mixer backbone and provide pre-trained checkpoints.

• Add a tool to visualize the learning rate curve of the training phase. Welcome to use with the tutorial!

63.13.2 New Features

• Add MLP Mixer Backbone. (#528, #539)

• Support positive weights in BCE. (#516)

• Add a tool to visualize learning rate in each iterations. (#498)

63.13.3 Improvements

• Use CircleCI to do unit tests. (#567)

• Focal loss for single label tasks. (#548)

• Remove useless import_modules_from_string. (#544)

• Rename config files according to the config name standard. (#508)

• Use reset_classifier to remove head of timm backbones. (#534)

• Support passing arguments to loss from head. (#523)

63.13. v0.18.0(30/11/2021) 197

https://github.com/open-mmlab/mmclassification/pull/595
https://github.com/open-mmlab/mmclassification/pull/592
https://github.com/open-mmlab/mmclassification/pull/529
https://github.com/open-mmlab/mmclassification/pull/568
https://github.com/open-mmlab/mmclassification/pull/583
https://github.com/open-mmlab/mmclassification/pull/575
https://github.com/open-mmlab/mmclassification/pull/611
https://github.com/open-mmlab/mmclassification/pull/580
https://github.com/open-mmlab/mmclassification/pull/571
https://github.com/open-mmlab/mmclassification/pull/594
https://github.com/open-mmlab/mmclassification/pull/525
https://github.com/open-mmlab/mmclassification/pull/584
https://mmclassification.readthedocs.io/en/latest/tools/visualization.html#learning-rate-schedule-visualization
https://github.com/open-mmlab/mmclassification/pull/528
https://github.com/open-mmlab/mmclassification/pull/539
https://github.com/open-mmlab/mmclassification/pull/516
https://github.com/open-mmlab/mmclassification/pull/498
https://github.com/open-mmlab/mmclassification/pull/567
https://github.com/open-mmlab/mmclassification/pull/548
https://github.com/open-mmlab/mmclassification/pull/544
https://github.com/open-mmlab/mmclassification/pull/508
https://github.com/open-mmlab/mmclassification/pull/534
https://github.com/open-mmlab/mmclassification/pull/523


MMClassification Documentation, Release 0.25.0

• Refactor Resize transform and add Pad transform. (#506)

• Update mmcv dependency version. (#509)

63.13.4 Bug Fixes

• Fix bug when using ClassBalancedDataset. (#555)

• Fix a bug when using iter-based runner with ‘val’ workflow. (#542)

• Fix interpolation method checking in Resize. (#547)

• Fix a bug when load checkpoints in mulit-GPUs environment. (#527)

• Fix an error on indexing scalar metrics in analyze_result.py. (#518)

• Fix wrong condition judgment in analyze_logs.py and prevent empty curve. (#510)

63.13.5 Docs Update

• Fix vit config and model broken links. (#564)

• Add abstract and image for every paper. (#546)

• Add mmflow and mim in banner and readme. (#543)

• Add schedule and runtime tutorial docs. (#499)

• Add the top-5 acc in ResNet-CIFAR README. (#531)

• Fix TOC of visualization.md and add example images. (#513)

• Use docs link of other projects and add MMCV docs. (#511)

63.14 v0.17.0(29/10/2021)

63.14.1 Highlights

• Support Tokens-to-Token ViT backbone and Res2Net backbone. Welcome to use!

• Support ImageNet21k dataset.

• Add a pipeline visualization tool. Try it with the tutorials!

63.14.2 New Features

• Add Tokens-to-Token ViT backbone and converted checkpoints. (#467)

• Add Res2Net backbone and converted weights. (#465)

• Support ImageNet21k dataset. (#461)

• Support seesaw loss. (#500)

• Add a pipeline visualization tool. (#406)

• Add a tool to find broken files. (#482)

• Add a tool to test TorchServe. (#468)
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63.14.3 Improvements

• Refator Vision Transformer. (#395)

• Use context manager to reuse matplotlib figures. (#432)

63.14.4 Bug Fixes

• Remove DistSamplerSeedHook if use IterBasedRunner. (#501)

• Set the priority of EvalHook to “LOW” to avoid a bug when using IterBasedRunner. (#488)

• Fix a wrong parameter of get_root_logger in apis/train.py. (#486)

• Fix version check in dataset builder. (#474)

63.14.5 Docs Update

• Add English Colab tutorials and update Chinese Colab tutorials. (#483, #497)

• Add tutuorial for config files. (#487)

• Add model-pages in Model Zoo. (#480)

• Add code-spell pre-commit hook and fix a large mount of typos. (#470)

63.15 v0.16.0(30/9/2021)

63.15.1 Highlights

• We have improved compatibility with downstream repositories like MMDetection and MMSegmentation. We
will add some examples about how to use our backbones in MMDetection.

• Add RepVGG backbone and checkpoints. Welcome to use it!

• Add timm backbones wrapper, now you can simply use backbones of pytorch-image-models in MMClassifica-
tion!

63.15.2 New Features

• Add RepVGG backbone and checkpoints. (#414)

• Add timm backbones wrapper. (#427)
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63.15.3 Improvements

• Fix TnT compatibility and verbose warning. (#436)

• Support setting --out-items in tools/test.py. (#437)

• Add datetime info and saving model using torch<1.6 format. (#439)

• Improve downstream repositories compatibility. (#421)

• Rename the option --options to --cfg-options in some tools. (#425)

• Add PyTorch 1.9 and Python 3.9 build workflow, and remove some CI. (#422)

63.15.4 Bug Fixes

• Fix format error in test.py when metric returns np.ndarray. (#441)

• Fix publish_model bug if no parent of out_file. (#463)

• Fix num_classes bug in pytorch2onnx.py. (#458)

• Fix missing runtime requirement packaging. (#459)

• Fix saving simplified model bug in ONNX export tool. (#438)

63.15.5 Docs Update

• Update getting_started.md and install.md. And rewrite finetune.md. (#466)

• Use PyTorch style docs theme. (#457)

• Update metafile and Readme. (#435)

• Add CITATION.cff. (#428)

63.16 v0.15.0(31/8/2021)

63.16.1 Highlights

• Support hparams argument in AutoAugment and RandAugment to provide hyperparameters for sub-policies.

• Support custom squeeze channels in SELayer.

• Support classwise weight in losses.

63.16.2 New Features

• Add hparams argument in AutoAugment and RandAugment and some other improvement. (#398)

• Support classwise weight in losses. (#388)

• Enhance SELayer to support custom squeeze channels. (#417)
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63.16.3 Code Refactor

• Better result visualization. (#419)

• Use post_process function to handle pred result processing. (#390)

• Update digit_version function. (#402)

• Avoid albumentations to install both opencv and opencv-headless. (#397)

• Avoid unnecessary listdir when building ImageNet. (#396)

• Use dynamic mmcv download link in TorchServe dockerfile. (#387)

63.16.4 Docs Improvement

• Add readme of some algorithms and update meta yml. (#418)

• Add Copyright information. (#413)

• Fix typo ‘metirc’. (#411)

• Update QQ group QR code. (#393)

• Add PR template and modify issue template. (#380)

63.17 v0.14.0(4/8/2021)

63.17.1 Highlights

• Add transformer-in-transformer backbone and pretrain checkpoints, refers to the paper.

• Add Chinese colab tutorial.

• Provide dockerfile to build mmcls dev docker image.

63.17.2 New Features

• Add transformer in transformer backbone and pretrain checkpoints. (#339)

• Support mim, welcome to use mim to manage your mmcls project. (#376)

• Add Dockerfile. (#365)

• Add ResNeSt configs. (#332)

63.17.3 Improvements

• Use the presistent_works option if available, to accelerate training. (#349)

• Add Chinese ipynb tutorial. (#306)

• Refactor unit tests. (#321)

• Support to test mmdet inference with mmcls backbone. (#343)

• Use zero as default value of thrs in metrics. (#341)
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63.17.4 Bug Fixes

• Fix ImageNet dataset annotation file parse bug. (#370)

• Fix docstring typo and init bug in ShuffleNetV1. (#374)

• Use local ATTENTION registry to avoid conflict with other repositories. (#376)

• Fix swin transformer config bug. (#355)

• Fix patch_cfg argument bug in SwinTransformer. (#368)

• Fix duplicate init_weights call in ViT init function. (#373)

• Fix broken _base_ link in a resnet config. (#361)

• Fix vgg-19 model link missing. (#363)

63.18 v0.13.0(3/7/2021)

• Support Swin-Transformer backbone and add training configs for Swin-Transformer on ImageNet.

63.18.1 New Features

• Support Swin-Transformer backbone and add training configs for Swin-Transformer on ImageNet. (#271)

• Add pretained model of RegNetX. (#269)

• Support adding custom hooks in config file. (#305)

• Improve and add Chinese translation of CONTRIBUTING.md and all tools tutorials. (#320)

• Dump config before training. (#282)

• Add torchscript and torchserve deployment tools. (#279, #284)

63.18.2 Improvements

• Improve test tools and add some new tools. (#322)

• Correct MobilenetV3 backbone structure and add pretained models. (#291)

• Refactor PatchEmbed and HybridEmbed as independent components. (#330)

• Refactor mixup and cutmix as Augments to support more functions. (#278)

• Refactor weights initialization method. (#270, #318, #319)

• Refactor LabelSmoothLoss to support multiple calculation formulas. (#285)
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63.18.3 Bug Fixes

• Fix bug for CPU training. (#286)

• Fix missing test data when num_imgs can not be evenly divided by num_gpus. (#299)

• Fix build compatible with pytorch v1.3-1.5. (#301)

• Fix magnitude_std bug in RandAugment. (#309)

• Fix bug when samples_per_gpu is 1. (#311)

63.19 v0.12.0(3/6/2021)

• Finish adding Chinese tutorials and build Chinese documentation on readthedocs.

• Update ResNeXt checkpoints and ResNet checkpoints on CIFAR.

63.19.1 New Features

• Improve and add Chinese translation of data_pipeline.md and new_modules.md. (#265)

• Build Chinese translation on readthedocs. (#267)

• Add an argument efficientnet_style to RandomResizedCrop and CenterCrop. (#268)

63.19.2 Improvements

• Only allow directory operation when rank==0 when testing. (#258)

• Fix typo in base_head. (#274)

• Update ResNeXt checkpoints. (#283)

63.19.3 Bug Fixes

• Add attribute data.test in MNIST configs. (#264)

• Download CIFAR/MNIST dataset only on rank 0. (#273)

• Fix MMCV version compatibility. (#276)

• Fix CIFAR color channels bug and update checkpoints in model zoo. (#280)

63.20 v0.11.1(21/5/2021)

• Refine new_dataset.md and add Chinese translation of finture.md, new_dataset.md.
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63.20.1 New Features

• Add dim argument for GlobalAveragePooling. (#236)

• Add random noise to RandAugment magnitude. (#240)

• Refine new_dataset.md and add Chinese translation of finture.md, new_dataset.md. (#243)

63.20.2 Improvements

• Refactor arguments passing for Heads. (#239)

• Allow more flexible magnitude_range in RandAugment. (#249)

• Inherits MMCV registry so that in the future OpenMMLab repos like MMDet and MMSeg could directly use
the backbones supported in MMCls. (#252)

63.20.3 Bug Fixes

• Fix typo in analyze_results.py. (#237)

• Fix typo in unittests. (#238)

• Check if specified tmpdir exists when testing to avoid deleting existing data. (#242 & #258)

• Add missing config files in MANIFEST.in. (#250 & #255)

• Use temporary directory under shared directory to collect results to avoid unavailability of temporary directory
for multi-node testing. (#251)

63.21 v0.11.0(1/5/2021)

• Support cutmix trick.

• Support random augmentation.

• Add tools/deployment/test.py as a ONNX runtime test tool.

• Support ViT backbone and add training configs for ViT on ImageNet.

• Add Chinese README.md and some Chinese tutorials.

63.21.1 New Features

• Support cutmix trick. (#198)

• Add simplify option in pytorch2onnx.py. (#200)

• Support random augmentation. (#201)

• Add config and checkpoint for training ResNet on CIFAR-100. (#208)

• Add tools/deployment/test.py as a ONNX runtime test tool. (#212)

• Support ViT backbone and add training configs for ViT on ImageNet. (#214)

• Add finetuning configs for ViT on ImageNet. (#217)

• Add device option to support training on CPU. (#219)
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• Add Chinese README.md and some Chinese tutorials. (#221)

• Add metafile.yml in configs to support interaction with paper with code(PWC) and MMCLI. (#225)

• Upload configs and converted checkpoints for ViT fintuning on ImageNet. (#230)

63.21.2 Improvements

• Fix LabelSmoothLoss so that label smoothing and mixup could be enabled at the same time. (#203)

• Add cal_acc option in ClsHead. (#206)

• Check CLASSES in checkpoint to avoid unexpected key error. (#207)

• Check mmcv version when importing mmcls to ensure compatibility. (#209)

• Update CONTRIBUTING.md to align with that in MMCV. (#210)

• Change tags to html comments in configs README.md. (#226)

• Clean codes in ViT backbone. (#227)

• Reformat pytorch2onnx.md tutorial. (#229)

• Update setup.py to support MMCLI. (#232)

63.21.3 Bug Fixes

• Fix missing cutmix_prob in ViT configs. (#220)

• Fix backend for resize in ResNeXt configs. (#222)

63.22 v0.10.0(1/4/2021)

• Support AutoAugmentation

• Add tutorials for installation and usage.

63.22.1 New Features

• Add Rotate pipeline for data augmentation. (#167)

• Add Invert pipeline for data augmentation. (#168)

• Add Color pipeline for data augmentation. (#171)

• Add Solarize and Posterize pipeline for data augmentation. (#172)

• Support fp16 training. (#178)

• Add tutorials for installation and basic usage of MMClassification.(#176)

• Support AutoAugmentation, AutoContrast, Equalize, Contrast, Brightness and Sharpness pipelines
for data augmentation. (#179)
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63.22.2 Improvements

• Support dynamic shape export to onnx. (#175)

• Release training configs and update model zoo for fp16 (#184)

• Use MMCV’s EvalHook in MMClassification (#182)

63.22.3 Bug Fixes

• Fix wrong naming in vgg config (#181)

63.23 v0.9.0(1/3/2021)

• Implement mixup trick.

• Add a new tool to create TensorRT engine from ONNX, run inference and verify outputs in Python.

63.23.1 New Features

• Implement mixup and provide configs of training ResNet50 using mixup. (#160)

• Add Shear pipeline for data augmentation. (#163)

• Add Translate pipeline for data augmentation. (#165)

• Add tools/onnx2tensorrt.py as a tool to create TensorRT engine from ONNX, run inference and verify
outputs in Python. (#153)

63.23.2 Improvements

• Add --eval-options in tools/test.py to support eval options override, matching the behavior of other
open-mmlab projects. (#158)

• Support showing and saving painted results in mmcls.apis.test and tools/test.py, matching the behavior
of other open-mmlab projects. (#162)

63.23.3 Bug Fixes

• Fix configs for VGG, replace checkpoints converted from other repos with the ones trained by ourselves and
upload the missing logs in the model zoo. (#161)
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63.24 v0.8.0(31/1/2021)

• Support multi-label task.

• Support more flexible metrics settings.

• Fix bugs.

63.24.1 New Features

• Add evaluation metrics: mAP, CP, CR, CF1, OP, OR, OF1 for multi-label task. (#123)

• Add BCE loss for multi-label task. (#130)

• Add focal loss for multi-label task. (#131)

• Support PASCAL VOC 2007 dataset for multi-label task. (#134)

• Add asymmetric loss for multi-label task. (#132)

• Add analyze_results.py to select images for success/fail demonstration. (#142)

• Support new metric that calculates the total number of occurrences of each label. (#143)

• Support class-wise evaluation results. (#143)

• Add thresholds in eval_metrics. (#146)

• Add heads and a baseline config for multilabel task. (#145)

63.24.2 Improvements

• Remove the models with 0 checkpoint and ignore the repeated papers when counting papers to gain more accurate
model statistics. (#135)

• Add tags in README.md. (#137)

• Fix optional issues in docstring. (#138)

• Update stat.py to classify papers. (#139)

• Fix mismatched columns in README.md. (#150)

• Fix test.py to support more evaluation metrics. (#155)

63.24.3 Bug Fixes

• Fix bug in VGG weight_init. (#140)

• Fix bug in 2 ResNet configs in which outdated heads were used. (#147)

• Fix bug of misordered height and width in RandomCrop and RandomResizedCrop. (#151)

• Fix missing meta_keys in Collect. (#149 & #152)
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63.25 v0.7.0(31/12/2020)

• Add more evaluation metrics.

• Fix bugs.

63.25.1 New Features

• Remove installation of MMCV from requirements. (#90)

• Add 3 evaluation metrics: precision, recall and F-1 score. (#93)

• Allow config override during testing and inference with --options. (#91 & #96)

63.25.2 Improvements

• Use build_runner to make runners more flexible. (#54)

• Support to get category ids in BaseDataset. (#72)

• Allow CLASSES override during BaseDateset initialization. (#85)

• Allow input image as ndarray during inference. (#87)

• Optimize MNIST config. (#98)

• Add config links in model zoo documentation. (#99)

• Use functions from MMCV to collect environment. (#103)

• Refactor config files so that they are now categorized by methods. (#116)

• Add README in config directory. (#117)

• Add model statistics. (#119)

• Refactor documentation in consistency with other MM repositories. (#126)

63.25.3 Bug Fixes

• Add missing CLASSES argument to dataset wrappers. (#66)

• Fix slurm evaluation error during training. (#69)

• Resolve error caused by shape in Accuracy. (#104)

• Fix bug caused by extremely insufficient data in distributed sampler.(#108)

• Fix bug in gpu_ids in distributed training. (#107)

• Fix bug caused by extremely insufficient data in collect results during testing (#114)
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63.26 v0.6.0(11/10/2020)

• Support new method: ResNeSt and VGG.

• Support new dataset: CIFAR10.

• Provide new tools to do model inference, model conversion from pytorch to onnx.

63.26.1 New Features

• Add model inference. (#16)

• Add pytorch2onnx. (#20)

• Add PIL backend for transform Resize. (#21)

• Add ResNeSt. (#25)

• Add VGG and its pretained models. (#27)

• Add CIFAR10 configs and models. (#38)

• Add albumentations transforms. (#45)

• Visualize results on image demo. (#58)

63.26.2 Improvements

• Replace urlretrieve with urlopen in dataset.utils. (#13)

• Resize image according to its short edge. (#22)

• Update ShuffleNet config. (#31)

• Update pre-trained models for shufflenet_v2, shufflenet_v1, se-resnet50, se-resnet101. (#33)

63.26.3 Bug Fixes

• Fix init_weights in shufflenet_v2.py. (#29)

• Fix the parameter size in test_pipeline. (#30)

• Fix the parameter in cosine lr schedule. (#32)

• Fix the convert tools for mobilenet_v2. (#34)

• Fix crash in CenterCrop transform when image is greyscale (#40)

• Fix outdated configs. (#53)
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COMPATIBILITY OF MMCLASSIFICATION 0.X

64.1 MMClassification 0.20.1

64.1.1 MMCV compatibility

In Twins backbone, we use the PatchEmbedmodule of MMCV, and this module is added after MMCV 1.4.2. Therefore,
we need to update the mmcv version to 1.4.2.
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FREQUENTLY ASKED QUESTIONS

We list some common troubles faced by many users and their corresponding solutions here. Feel free to enrich the list
if you find any frequent issues and have ways to help others to solve them. If the contents here do not cover your issue,
please create an issue using the provided templates and make sure you fill in all required information in the template.

65.1 Installation

• Compatibility issue between MMCV and MMClassification; “AssertionError: MMCV==xxx is used but incom-
patible. Please install mmcv>=xxx, <=xxx.”

Compatible MMClassification and MMCV versions are shown as below. Please choose the correct version of
MMCV to avoid installation issues.

MMClassification version MMCV version
dev mmcv>=1.7.0, <1.9.0
0.25.0 (master) mmcv>=1.4.2, <1.9.0
0.24.1 mmcv>=1.4.2, <1.9.0
0.23.2 mmcv>=1.4.2, <1.7.0
0.22.1 mmcv>=1.4.2, <1.6.0
0.21.0 mmcv>=1.4.2, <=1.5.0
0.20.1 mmcv>=1.4.2, <=1.5.0
0.19.0 mmcv>=1.3.16, <=1.5.0
0.18.0 mmcv>=1.3.16, <=1.5.0
0.17.0 mmcv>=1.3.8, <=1.5.0
0.16.0 mmcv>=1.3.8, <=1.5.0
0.15.0 mmcv>=1.3.8, <=1.5.0
0.15.0 mmcv>=1.3.8, <=1.5.0
0.14.0 mmcv>=1.3.8, <=1.5.0
0.13.0 mmcv>=1.3.8, <=1.5.0
0.12.0 mmcv>=1.3.1, <=1.5.0
0.11.1 mmcv>=1.3.1, <=1.5.0
0.11.0 mmcv>=1.3.0
0.10.0 mmcv>=1.3.0
0.9.0 mmcv>=1.1.4
0.8.0 mmcv>=1.1.4
0.7.0 mmcv>=1.1.4
0.6.0 mmcv>=1.1.4

Note: Since the dev branch is under frequent development, the MMCV version dependency may be inaccurate.
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If you encounter problems when using the dev branch, please try to update MMCV to the latest version.

• Using Albumentations

If you would like to use albumentations, we suggest using pip install -r requirements/albu.txt or
pip install -U albumentations --no-binary qudida,albumentations.

If you simply use pip install albumentations>=0.3.2, it will install opencv-python-headless simul-
taneously (even though you have already installed opencv-python). Please refer to the official documentation
for details.

65.2 Coding

• Do I need to reinstall mmcls after some code modifications?

If you follow the best practice and install mmcls from source, any local modifications made to the code will take
effect without reinstallation.

• How to develop with multiple MMClassification versions?

Generally speaking, we recommend to use different virtual environments to manage MMClassification in dif-
ferent working directories. However, you can also use the same environment to develop MMClassification in
different folders, like mmcls-0.21, mmcls-0.23. When you run the train or test shell script, it will adopt the mm-
cls package in the current folder. And when you run other Python script, you can also add PYTHONPATH=`pwd`
at the beginning of your command to use the package in the current folder.

Conversely, to use the default MMClassification installed in the environment rather than the one you are working
with, you can remove the following line in those shell scripts:

PYTHONPATH="$(dirname $0)/..":$PYTHONPATH
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NPU (HUAWEI ASCEND)

66.1 Usage

66.1.1 General Usage

Please install MMCV with NPU device support according to the tutorial.

Here we use 8 NPUs on your computer to train the model with the following command:

bash ./tools/dist_train.sh configs/resnet/resnet50_8xb32_in1k.py 8 --device npu

Also, you can use only one NPU to train the model with the following command:

python ./tools/train.py configs/resnet/resnet50_8xb32_in1k.py --device npu

66.1.2 High-performance Usage on ARM server

Since the scheduling ability of ARM CPUs when processing resource preemption is not as good as that of X86 CPUs
during multi-card training, we provide a high-performance startup script to accelerate training with the following com-
mand:

# The script under the 8 cards of a single machine is shown here
bash tools/dist_train_arm.sh configs/resnet/resnet50_8xb32_in1k.py 8 --device npu --cfg-
→˓options data.workers_per_gpu=$(($(nproc)/8))

For resnet50 8 NPUs training with batch_size(data.samples_per_gpu)=512, the performance data is shown below:

CPU Start Script IterTime(s)
ARM(Kunpeng920 *4) ./tools/dist_train.sh ~0.9(0.85-1.0)
ARM(Kunpeng920 *4) ./tools/dist_train_arm.sh ~0.8(0.78s-0.85)
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66.2 Models Results

Model Top-1 (%) Top-5 (%) Config Download
ResNet-50 76.38 93.22 config model | log
ResNetXt-32x4d-50 77.55 93.75 config model | log
HRNet-W18 77.01 93.46 config model | log
ResNetV1D-152 79.11 94.54 config model | log
SE-ResNet-50 77.64 93.76 config model | log
VGG-11 68.92 88.83 config model | log
ShuffleNetV2 1.0x 69.53 88.82 config model | log
MobileNetV2 71.758 90.394 config model | log
MobileNetV3-Small 67.522 87.316 config model | log
*CSPResNeXt50 77.10 93.55 config model | log
*EfficientNet-B4(AA + AdvProp) 75.55 92.86 config model | log
**DenseNet121 72.62 91.04 config model | log

Notes:

• If not specially marked, the results are almost same between results on the NPU and results on the GPU with
FP32.

• (*) The training results of these models are lower than the results on the readme in the corresponding model,
mainly because the results on the readme are directly the weight of the timm of the eval, and the results on this
side are retrained according to the config with mmcls. The results of the config training on the GPU are consistent
with the results of the NPU.

• (**) The accuracy of this model is slightly lower because config is a 4-card config, we use 8 cards to run, and
users can adjust hyperparameters to get the best accuracy results.

All above models are provided by Huawei Ascend group.
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INDICES AND TABLES

• genindex

• search
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