mmpretrain.models.backbones.densenet 源代码
# Copyright (c) OpenMMLab. All rights reserved.
import math
from itertools import chain
from typing import Sequence
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from mmcv.cnn.bricks import build_activation_layer, build_norm_layer
from torch.jit.annotations import List
from mmpretrain.registry import MODELS
from .base_backbone import BaseBackbone
class DenseLayer(BaseBackbone):
"""DenseBlock layers."""
def __init__(self,
in_channels,
growth_rate,
bn_size,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
drop_rate=0.,
memory_efficient=False):
super(DenseLayer, self).__init__()
self.norm1 = build_norm_layer(norm_cfg, in_channels)[1]
self.conv1 = nn.Conv2d(
in_channels,
bn_size * growth_rate,
kernel_size=1,
stride=1,
bias=False)
self.act = build_activation_layer(act_cfg)
self.norm2 = build_norm_layer(norm_cfg, bn_size * growth_rate)[1]
self.conv2 = nn.Conv2d(
bn_size * growth_rate,
growth_rate,
kernel_size=3,
stride=1,
padding=1,
bias=False)
self.drop_rate = float(drop_rate)
self.memory_efficient = memory_efficient
def bottleneck_fn(self, xs):
# type: (List[torch.Tensor]) -> torch.Tensor
concated_features = torch.cat(xs, 1)
bottleneck_output = self.conv1(
self.act(self.norm1(concated_features))) # noqa: T484
return bottleneck_output
# todo: rewrite when torchscript supports any
def any_requires_grad(self, x):
# type: (List[torch.Tensor]) -> bool
for tensor in x:
if tensor.requires_grad:
return True
return False
# This decorator indicates to the compiler that a function or method
# should be ignored and replaced with the raising of an exception.
# Here this function is incompatible with torchscript.
@torch.jit.unused # noqa: T484
def call_checkpoint_bottleneck(self, x):
# type: (List[torch.Tensor]) -> torch.Tensor
def closure(*xs):
return self.bottleneck_fn(xs)
# Here use torch.utils.checkpoint to rerun a forward-pass during
# backward in bottleneck to save memories.
return cp.checkpoint(closure, *x)
def forward(self, x): # noqa: F811
# type: (List[torch.Tensor]) -> torch.Tensor
# assert input features is a list of Tensor
assert isinstance(x, list)
if self.memory_efficient and self.any_requires_grad(x):
if torch.jit.is_scripting():
raise Exception('Memory Efficient not supported in JIT')
bottleneck_output = self.call_checkpoint_bottleneck(x)
else:
bottleneck_output = self.bottleneck_fn(x)
new_features = self.conv2(self.act(self.norm2(bottleneck_output)))
if self.drop_rate > 0:
new_features = F.dropout(
new_features, p=self.drop_rate, training=self.training)
return new_features
class DenseBlock(nn.Module):
"""DenseNet Blocks."""
def __init__(self,
num_layers,
in_channels,
bn_size,
growth_rate,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
drop_rate=0.,
memory_efficient=False):
super(DenseBlock, self).__init__()
self.block = nn.ModuleList([
DenseLayer(
in_channels + i * growth_rate,
growth_rate=growth_rate,
bn_size=bn_size,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
drop_rate=drop_rate,
memory_efficient=memory_efficient) for i in range(num_layers)
])
def forward(self, init_features):
features = [init_features]
for layer in self.block:
new_features = layer(features)
features.append(new_features)
return torch.cat(features, 1)
class DenseTransition(nn.Sequential):
"""DenseNet Transition Layers."""
def __init__(self,
in_channels,
out_channels,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU')):
super(DenseTransition, self).__init__()
self.add_module('norm', build_norm_layer(norm_cfg, in_channels)[1])
self.add_module('act', build_activation_layer(act_cfg))
self.add_module(
'conv',
nn.Conv2d(
in_channels, out_channels, kernel_size=1, stride=1,
bias=False))
self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))
[文档]@MODELS.register_module()
class DenseNet(BaseBackbone):
"""DenseNet.
A PyTorch implementation of : `Densely Connected Convolutional Networks
<https://arxiv.org/pdf/1608.06993.pdf>`_
Modified from the `official repo
<https://github.com/liuzhuang13/DenseNet>`_
and `pytorch
<https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_.
Args:
arch (str | dict): The model's architecture. If string, it should be
one of architecture in ``DenseNet.arch_settings``. And if dict, it
should include the following two keys:
- growth_rate (int): Each layer of DenseBlock produce `k` feature
maps. Here refers `k` as the growth rate of the network.
- depths (list[int]): Number of repeated layers in each DenseBlock.
- init_channels (int): The output channels of stem layers.
Defaults to '121'.
in_channels (int): Number of input image channels. Defaults to 3.
bn_size (int): Refers to channel expansion parameter of 1x1
convolution layer. Defaults to 4.
drop_rate (float): Drop rate of Dropout Layer. Defaults to 0.
compression_factor (float): The reduction rate of transition layers.
Defaults to 0.5.
memory_efficient (bool): If True, uses checkpointing. Much more memory
efficient, but slower. Defaults to False.
See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_.
norm_cfg (dict): The config dict for norm layers.
Defaults to ``dict(type='BN')``.
act_cfg (dict): The config dict for activation after each convolution.
Defaults to ``dict(type='ReLU')``.
out_indices (Sequence | int): Output from which stages.
Defaults to -1, means the last stage.
frozen_stages (int): Stages to be frozen (all param fixed).
Defaults to 0, which means not freezing any parameters.
init_cfg (dict, optional): Initialization config dict.
"""
arch_settings = {
'121': {
'growth_rate': 32,
'depths': [6, 12, 24, 16],
'init_channels': 64,
},
'169': {
'growth_rate': 32,
'depths': [6, 12, 32, 32],
'init_channels': 64,
},
'201': {
'growth_rate': 32,
'depths': [6, 12, 48, 32],
'init_channels': 64,
},
'161': {
'growth_rate': 48,
'depths': [6, 12, 36, 24],
'init_channels': 96,
},
}
def __init__(self,
arch='121',
in_channels=3,
bn_size=4,
drop_rate=0,
compression_factor=0.5,
memory_efficient=False,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
out_indices=-1,
frozen_stages=0,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
if isinstance(arch, str):
assert arch in self.arch_settings, \
f'Unavailable arch, please choose from ' \
f'({set(self.arch_settings)}) or pass a dict.'
arch = self.arch_settings[arch]
elif isinstance(arch, dict):
essential_keys = {'growth_rate', 'depths', 'init_channels'}
assert isinstance(arch, dict) and essential_keys <= set(arch), \
f'Custom arch needs a dict with keys {essential_keys}'
self.growth_rate = arch['growth_rate']
self.depths = arch['depths']
self.init_channels = arch['init_channels']
self.act = build_activation_layer(act_cfg)
self.num_stages = len(self.depths)
# check out indices and frozen stages
if isinstance(out_indices, int):
out_indices = [out_indices]
assert isinstance(out_indices, Sequence), \
f'"out_indices" must by a sequence or int, ' \
f'get {type(out_indices)} instead.'
for i, index in enumerate(out_indices):
if index < 0:
out_indices[i] = self.num_stages + index
assert out_indices[i] >= 0, f'Invalid out_indices {index}'
self.out_indices = out_indices
self.frozen_stages = frozen_stages
# Set stem layers
self.stem = nn.Sequential(
nn.Conv2d(
in_channels,
self.init_channels,
kernel_size=7,
stride=2,
padding=3,
bias=False),
build_norm_layer(norm_cfg, self.init_channels)[1], self.act,
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
# Repetitions of DenseNet Blocks
self.stages = nn.ModuleList()
self.transitions = nn.ModuleList()
channels = self.init_channels
for i in range(self.num_stages):
depth = self.depths[i]
stage = DenseBlock(
num_layers=depth,
in_channels=channels,
bn_size=bn_size,
growth_rate=self.growth_rate,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
drop_rate=drop_rate,
memory_efficient=memory_efficient)
self.stages.append(stage)
channels += depth * self.growth_rate
if i != self.num_stages - 1:
transition = DenseTransition(
in_channels=channels,
out_channels=math.floor(channels * compression_factor),
norm_cfg=norm_cfg,
act_cfg=act_cfg,
)
channels = math.floor(channels * compression_factor)
else:
# Final layers after dense block is just bn with act.
# Unlike the paper, the original repo also put this in
# transition layer, whereas torchvision take this out.
# We reckon this as transition layer here.
transition = nn.Sequential(
build_norm_layer(norm_cfg, channels)[1],
self.act,
)
self.transitions.append(transition)
self._freeze_stages()
def forward(self, x):
x = self.stem(x)
outs = []
for i in range(self.num_stages):
x = self.stages[i](x)
x = self.transitions[i](x)
if i in self.out_indices:
outs.append(x)
return tuple(outs)
def _freeze_stages(self):
for i in range(self.frozen_stages):
downsample_layer = self.transitions[i]
stage = self.stages[i]
downsample_layer.eval()
stage.eval()
for param in chain(downsample_layer.parameters(),
stage.parameters()):
param.requires_grad = False
def train(self, mode=True):
super(DenseNet, self).train(mode)
self._freeze_stages()