mmpretrain.models.multimodal.blip2.blip2_opt_vqa 源代码
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional
import torch
from mmpretrain.registry import MODELS
from mmpretrain.structures import DataSample
from .blip2_caption import Blip2Caption
[文档]@MODELS.register_module()
class Blip2VQA(Blip2Caption):
"""BLIP2 VQA.
Module for BLIP2 VQA task. For more details about the initialization
params, please refer to :class:`Blip2Caption`.
"""
[文档] def predict(self,
images: torch.Tensor,
data_samples: Optional[list] = None,
**kwargs) -> List[DataSample]:
"""Predict captions from a batch of inputs.
Args:
images (torch.Tensor): The input tensor with shape
(N, C, ...) in general.
data_samples (List[DataSample], optional): The annotation
data of every samples. Defaults to None.
**kwargs: Other keyword arguments accepted by the ``predict``
method of :attr:`head`.
Returns:
List[DataSample]: Return list of data samples.
"""
questions = [d.question for d in data_samples]
# extract image features from
image_embeds = self.ln_vision_backbone(self.vision_backbone(images)[0])
image_atts = torch.ones(
image_embeds.size()[:-1],
dtype=torch.long,
).to(images.device)
# distill image features to query tokens
query_tokens = self.query_tokens.expand(image_embeds.size(0), -1, -1)
query_outputs = self.multimodal_backbone.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
inputs_opt = self.vision_neck([query_outputs.last_hidden_state])
attns_opt = torch.ones(
inputs_opt.size()[:-1], dtype=torch.long).to(images.device)
prompt = [self.prompt.format(q) for q in questions]
# use left padding
self.tokenizer.padding_side = 'left'
opt_tokens = self.tokenizer(
prompt, return_tensors='pt', padding='longest').to(images.device)
input_ids = opt_tokens.input_ids
attention_mask = torch.cat([attns_opt, opt_tokens.attention_mask],
dim=1)
inputs_embeds = self.text_backbone.model.decoder.embed_tokens(
input_ids)
inputs_embeds = torch.cat([inputs_opt, inputs_embeds], dim=1)
outputs = self.text_backbone.generate(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
do_sample=False,
num_beams=5,
max_new_tokens=self.max_txt_len,
min_length=1,
eos_token_id=self.eos_token_id,
length_penalty=-1.0,
)
output_text = self.tokenizer.batch_decode(
outputs, skip_special_tokens=True)
output_text = [text.strip() for text in output_text]
out_data_samples = []
for data_sample, decode_token in zip(data_samples, output_text):
data_sample.pred_answer = decode_token
out_data_samples.append(data_sample)
return out_data_samples