mmpretrain.models.selfsup.simclr 源代码
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Any, Dict, List, Tuple
import torch
from mmengine.dist import all_gather, get_rank
from mmpretrain.registry import MODELS
from mmpretrain.structures import DataSample
from .base import BaseSelfSupervisor
class GatherLayer(torch.autograd.Function):
"""Gather tensors from all process, supporting backward propagation."""
@staticmethod
def forward(ctx: Any, input: torch.Tensor) -> Tuple[List]:
ctx.save_for_backward(input)
output = all_gather(input)
return tuple(output)
@staticmethod
def backward(ctx: Any, *grads: torch.Tensor) -> torch.Tensor:
input, = ctx.saved_tensors
grad_out = torch.zeros_like(input)
grad_out[:] = grads[get_rank()]
return grad_out
[文档]@MODELS.register_module()
class SimCLR(BaseSelfSupervisor):
"""SimCLR.
Implementation of `A Simple Framework for Contrastive Learning of Visual
Representations <https://arxiv.org/abs/2002.05709>`_.
"""
@staticmethod
def _create_buffer(
batch_size: int, device: torch.device
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Compute the mask and the index of positive samples.
Args:
batch_size (int): The batch size.
device (torch.device): The device of backend.
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
- The mask for feature selection.
- The index of positive samples.
- The mask of negative samples.
"""
mask = 1 - torch.eye(batch_size * 2, dtype=torch.uint8).to(device)
pos_idx = (
torch.arange(batch_size * 2).to(device),
2 * torch.arange(batch_size, dtype=torch.long).unsqueeze(1).repeat(
1, 2).view(-1, 1).squeeze().to(device))
neg_mask = torch.ones((batch_size * 2, batch_size * 2 - 1),
dtype=torch.uint8).to(device)
neg_mask[pos_idx] = 0
return mask, pos_idx, neg_mask
[文档] def loss(self, inputs: List[torch.Tensor], data_samples: List[DataSample],
**kwargs) -> Dict[str, torch.Tensor]:
"""The forward function in training.
Args:
inputs (List[torch.Tensor]): The input images.
data_samples (List[DataSample]): All elements required
during the forward function.
Returns:
Dict[str, torch.Tensor]: A dictionary of loss components.
"""
assert isinstance(inputs, list)
inputs = torch.stack(inputs, 1)
inputs = inputs.reshape((inputs.size(0) * 2, inputs.size(2),
inputs.size(3), inputs.size(4)))
x = self.backbone(inputs)
z = self.neck(x)[0] # (2n)xd
z = z / (torch.norm(z, p=2, dim=1, keepdim=True) + 1e-10)
z = torch.cat(GatherLayer.apply(z), dim=0) # (2N)xd
assert z.size(0) % 2 == 0
N = z.size(0) // 2
s = torch.matmul(z, z.permute(1, 0)) # (2N)x(2N)
mask, pos_idx, neg_mask = self._create_buffer(N, s.device)
# remove diagonal, (2N)x(2N-1)
s = torch.masked_select(s, mask == 1).reshape(s.size(0), -1)
positive = s[pos_idx].unsqueeze(1) # (2N)x1
# select negative, (2N)x(2N-2)
negative = torch.masked_select(s, neg_mask == 1).reshape(s.size(0), -1)
loss = self.head.loss(positive, negative)
losses = dict(loss=loss)
return losses