SwAVNeck¶
- class mmpretrain.models.necks.SwAVNeck(in_channels, hid_channels, out_channels, with_avg_pool=True, with_l2norm=True, norm_cfg={'type': 'SyncBN'}, init_cfg=[{'type': 'Constant', 'val': 1, 'layer': ['_BatchNorm', 'GroupNorm']}])[源代码]¶
The non-linear neck of SwAV: fc-bn-relu-fc-normalization.
- 参数:
in_channels (int) – Number of input channels.
hid_channels (int) – Number of hidden channels.
out_channels (int) – Number of output channels.
with_avg_pool (bool) – Whether to apply the global average pooling after backbone. Defaults to True.
with_l2norm (bool) – whether to normalize the output after projection. Defaults to True.
norm_cfg (dict) – Dictionary to construct and config norm layer. Defaults to dict(type=’SyncBN’).
init_cfg (dict or list[dict], optional) – Initialization config dict.
- forward(x)[源代码]¶
Forward function.
- 参数:
x (List[torch.Tensor]) – list of feature maps, len(x) according to len(num_crops).
- 返回:
The projection vectors.
- 返回类型:
- forward_projection(x)[源代码]¶
Compute projection.
- 参数:
x (torch.Tensor) – The feature vectors after pooling.
- 返回:
The output features with projection or L2-norm.
- 返回类型: