Shortcuts

mmcls.models.backbones.shufflenet_v1 源代码

# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import ConvModule, build_activation_layer
from mmengine.model import BaseModule
from mmengine.model.weight_init import constant_init, normal_init
from torch.nn.modules.batchnorm import _BatchNorm

from mmcls.models.utils import channel_shuffle, make_divisible
from mmcls.registry import MODELS
from .base_backbone import BaseBackbone


class ShuffleUnit(BaseModule):
    """ShuffleUnit block.

    ShuffleNet unit with pointwise group convolution (GConv) and channel
    shuffle.

    Args:
        in_channels (int): The input channels of the ShuffleUnit.
        out_channels (int): The output channels of the ShuffleUnit.
        groups (int): The number of groups to be used in grouped 1x1
            convolutions in each ShuffleUnit. Default: 3
        first_block (bool): Whether it is the first ShuffleUnit of a
            sequential ShuffleUnits. Default: True, which means not using the
            grouped 1x1 convolution.
        combine (str): The ways to combine the input and output
            branches. Default: 'add'.
        conv_cfg (dict, optional): Config dict for convolution layer.
            Default: None, which means using conv2d.
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='BN').
        act_cfg (dict): Config dict for activation layer.
            Default: dict(type='ReLU').
        with_cp (bool): Use checkpoint or not. Using checkpoint
            will save some memory while slowing down the training speed.
            Default: False.

    Returns:
        Tensor: The output tensor.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 groups=3,
                 first_block=True,
                 combine='add',
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 act_cfg=dict(type='ReLU'),
                 with_cp=False):
        super(ShuffleUnit, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.first_block = first_block
        self.combine = combine
        self.groups = groups
        self.bottleneck_channels = self.out_channels // 4
        self.with_cp = with_cp

        if self.combine == 'add':
            self.depthwise_stride = 1
            self._combine_func = self._add
            assert in_channels == out_channels, (
                'in_channels must be equal to out_channels when combine '
                'is add')
        elif self.combine == 'concat':
            self.depthwise_stride = 2
            self._combine_func = self._concat
            self.out_channels -= self.in_channels
            self.avgpool = nn.AvgPool2d(kernel_size=3, stride=2, padding=1)
        else:
            raise ValueError(f'Cannot combine tensors with {self.combine}. '
                             'Only "add" and "concat" are supported')

        self.first_1x1_groups = 1 if first_block else self.groups
        self.g_conv_1x1_compress = ConvModule(
            in_channels=self.in_channels,
            out_channels=self.bottleneck_channels,
            kernel_size=1,
            groups=self.first_1x1_groups,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg)

        self.depthwise_conv3x3_bn = ConvModule(
            in_channels=self.bottleneck_channels,
            out_channels=self.bottleneck_channels,
            kernel_size=3,
            stride=self.depthwise_stride,
            padding=1,
            groups=self.bottleneck_channels,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            act_cfg=None)

        self.g_conv_1x1_expand = ConvModule(
            in_channels=self.bottleneck_channels,
            out_channels=self.out_channels,
            kernel_size=1,
            groups=self.groups,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            act_cfg=None)

        self.act = build_activation_layer(act_cfg)

    @staticmethod
    def _add(x, out):
        # residual connection
        return x + out

    @staticmethod
    def _concat(x, out):
        # concatenate along channel axis
        return torch.cat((x, out), 1)

    def forward(self, x):

        def _inner_forward(x):
            residual = x

            out = self.g_conv_1x1_compress(x)
            out = self.depthwise_conv3x3_bn(out)

            if self.groups > 1:
                out = channel_shuffle(out, self.groups)

            out = self.g_conv_1x1_expand(out)

            if self.combine == 'concat':
                residual = self.avgpool(residual)
                out = self.act(out)
                out = self._combine_func(residual, out)
            else:
                out = self._combine_func(residual, out)
                out = self.act(out)
            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        return out


[文档]@MODELS.register_module() class ShuffleNetV1(BaseBackbone): """ShuffleNetV1 backbone. Args: groups (int): The number of groups to be used in grouped 1x1 convolutions in each ShuffleUnit. Default: 3. widen_factor (float): Width multiplier - adjusts the number of channels in each layer by this amount. Default: 1.0. out_indices (Sequence[int]): Output from which stages. Default: (2, ) frozen_stages (int): Stages to be frozen (all param fixed). Default: -1, which means not freezing any parameters. conv_cfg (dict, optional): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict): Config dict for activation layer. Default: dict(type='ReLU'). norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Default: False. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. """ def __init__(self, groups=3, widen_factor=1.0, out_indices=(2, ), frozen_stages=-1, conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU'), norm_eval=False, with_cp=False, init_cfg=None): super(ShuffleNetV1, self).__init__(init_cfg) self.init_cfg = init_cfg self.stage_blocks = [4, 8, 4] self.groups = groups for index in out_indices: if index not in range(0, 3): raise ValueError('the item in out_indices must in ' f'range(0, 3). But received {index}') if frozen_stages not in range(-1, 3): raise ValueError('frozen_stages must be in range(-1, 3). ' f'But received {frozen_stages}') self.out_indices = out_indices self.frozen_stages = frozen_stages self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.act_cfg = act_cfg self.norm_eval = norm_eval self.with_cp = with_cp if groups == 1: channels = (144, 288, 576) elif groups == 2: channels = (200, 400, 800) elif groups == 3: channels = (240, 480, 960) elif groups == 4: channels = (272, 544, 1088) elif groups == 8: channels = (384, 768, 1536) else: raise ValueError(f'{groups} groups is not supported for 1x1 ' 'Grouped Convolutions') channels = [make_divisible(ch * widen_factor, 8) for ch in channels] self.in_channels = int(24 * widen_factor) self.conv1 = ConvModule( in_channels=3, out_channels=self.in_channels, kernel_size=3, stride=2, padding=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layers = nn.ModuleList() for i, num_blocks in enumerate(self.stage_blocks): first_block = True if i == 0 else False layer = self.make_layer(channels[i], num_blocks, first_block) self.layers.append(layer) def _freeze_stages(self): if self.frozen_stages >= 0: for param in self.conv1.parameters(): param.requires_grad = False for i in range(self.frozen_stages): layer = self.layers[i] layer.eval() for param in layer.parameters(): param.requires_grad = False def init_weights(self): super(ShuffleNetV1, self).init_weights() if (isinstance(self.init_cfg, dict) and self.init_cfg['type'] == 'Pretrained'): # Suppress default init if use pretrained model. return for name, m in self.named_modules(): if isinstance(m, nn.Conv2d): if 'conv1' in name: normal_init(m, mean=0, std=0.01) else: normal_init(m, mean=0, std=1.0 / m.weight.shape[1]) elif isinstance(m, (_BatchNorm, nn.GroupNorm)): constant_init(m, val=1, bias=0.0001) if isinstance(m, _BatchNorm): if m.running_mean is not None: nn.init.constant_(m.running_mean, 0)
[文档] def make_layer(self, out_channels, num_blocks, first_block=False): """Stack ShuffleUnit blocks to make a layer. Args: out_channels (int): out_channels of the block. num_blocks (int): Number of blocks. first_block (bool): Whether is the first ShuffleUnit of a sequential ShuffleUnits. Default: False, which means using the grouped 1x1 convolution. """ layers = [] for i in range(num_blocks): first_block = first_block if i == 0 else False combine_mode = 'concat' if i == 0 else 'add' layers.append( ShuffleUnit( self.in_channels, out_channels, groups=self.groups, first_block=first_block, combine=combine_mode, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, with_cp=self.with_cp)) self.in_channels = out_channels return nn.Sequential(*layers)
def forward(self, x): x = self.conv1(x) x = self.maxpool(x) outs = [] for i, layer in enumerate(self.layers): x = layer(x) if i in self.out_indices: outs.append(x) return tuple(outs) def train(self, mode=True): super(ShuffleNetV1, self).train(mode) self._freeze_stages() if mode and self.norm_eval: for m in self.modules(): if isinstance(m, _BatchNorm): m.eval()
Read the Docs v: mmcls-1.x
Versions
latest
stable
mmcls-1.x
mmcls-0.x
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.