Shortcuts

Prepare Dataset

CustomDataset

CustomDataset is a general dataset class for you to use your own datasets. To use CustomDataset, you need to organize your dataset files according to the following two formats:

Subfolder Format

In this format, you only need to re-organize your dataset folder and place all samples in one folder without creating any annotation files.

For supervised tasks (with with_label=True), we use the name of sub-folders as the categories names, as shown in the below example, class_x and class_y will be recognized as the categories names.

data_prefix/
├── class_x
│   ├── xxx.png
│   ├── xxy.png
│   └── ...
│       └── xxz.png
└── class_y
    ├── 123.png
    ├── nsdf3.png
    ├── ...
    └── asd932_.png

For unsupervised tasks (with with_label=False), we directly load all sample files under the specified folder:

data_prefix/
├── folder_1
│   ├── xxx.png
│   ├── xxy.png
│   └── ...
├── 123.png
├── nsdf3.png
└── ...

Assume you want to use it as the training dataset, and the below is the configurations in your config file.

train_dataloader = dict(
    ...
    # Training dataset configurations
    dataset=dict(
        type='CustomDataset',
        data_prefix='path/to/data_prefix',
        with_label=True,   # or False for unsupervised tasks
        pipeline=...
    )
)

Note

If you want to use this format, do not specify ann_file, or specify ann_file=''.

And please note that the subfolder format requires a folder scanning which may cause a slower initialization, especially for large datasets or slow file IO.

Text Annotation File Format

In this format, we use a text annotation file to store image file paths and the corespondding category indices.

For supervised tasks (with with_label=True), the annotation file should include the file path and the category index of one sample in one line and split them by a space, as below:

All these file paths can be absolute paths, or paths relative to the data_prefix.

folder_1/xxx.png 0
folder_1/xxy.png 1
123.png 4
nsdf3.png 3
...

Note

The index numbers of categories start from 0. And the value of ground-truth labels should fall in range [0, num_classes - 1].

In addition, please use the classes field in the dataset settings to specify the name of every category.

For unsupervised tasks (with with_label=False), the annotation file only need to include the file path of one sample in one line, as below:

folder_1/xxx.png
folder_1/xxy.png
123.png
nsdf3.png
...

Assume the entire dataset folder is as below:

data_root
├── meta
│   ├── test.txt     # The annotation file for the test dataset
│   ├── train.txt    # The annotation file for the training dataset
│   └── val.txt      # The annotation file for the validation dataset.
├── train
│   ├── 123.png
│   ├── folder_1
│   │   ├── xxx.png
│   │   └── xxy.png
│   └── nsdf3.png
├── test
└── val

Here is an example dataset settings in config files:

# Training dataloader configurations
train_dataloader = dict(
    dataset=dict(
        type='CustomDataset',
        data_root='path/to/data_root',  # The common prefix of both `ann_flie` and `data_prefix`.
        ann_file='meta/train.txt',      # The path of annotation file relative to the data_root.
        data_prefix='train',            # The prefix of file paths in the `ann_file`, relative to the data_root.
        with_label=True,                # or False for unsupervised tasks
        classes=['A', 'B', 'C', 'D', ...],  # The name of every category.
        pipeline=...,    # The transformations to process the dataset samples.
    )
    ...
)

Note

For a complete example about how to use the CustomDataset, please see How to Pretrain with Custom Dataset

ImageNet

ImageNet has multiple versions, but the most commonly used one is ILSVRC 2012. It can be accessed with the following steps.

MIM supports downloading from OpenXlab and preprocessing ImageNet dataset with one command line.

You need to register an account at OpenXlab official website and login by CLI.

# install OpenXlab CLI tools
pip install -U openxlab
# log in OpenXLab
openxlab login
# download and preprocess by MIM, better to execute in $MMPreTrain directory.
mim download mmpretrain --dataset imagenet1k

The Directory Structrue of the ImageNet dataset

We support two ways of organizing the ImageNet dataset: Subfolder Format and Text Annotation File Format.

Subfolder Format

We have provided a sample, which you can download and extract from this link. The directory structure of the dataset should be as below:

data/imagenet/
├── train/
│   ├── n01440764
│   │   ├── n01440764_10026.JPEG
│   │   ├── n01440764_10027.JPEG
│   │   ├── n01440764_10029.JPEG
│   │   ├── n01440764_10040.JPEG
│   │   ├── n01440764_10042.JPEG
│   │   ├── n01440764_10043.JPEG
│   │   └── n01440764_10048.JPEG
│   ├── ...
├── val/
│   ├── n01440764
│   │   ├── ILSVRC2012_val_00000293.JPEG
│   │   ├── ILSVRC2012_val_00002138.JPEG
│   │   ├── ILSVRC2012_val_00003014.JPEG
│   │   └── ...
│   ├── ...

Text Annotation File Format

You can download and untar the meta data from this link. And re-organize the dataset as below:

data/imagenet/
├── meta/
│   ├── train.txt
│   ├── test.txt
│   └── val.txt
├── train/
│   ├── n01440764
│   │   ├── n01440764_10026.JPEG
│   │   ├── n01440764_10027.JPEG
│   │   ├── n01440764_10029.JPEG
│   │   ├── n01440764_10040.JPEG
│   │   ├── n01440764_10042.JPEG
│   │   ├── n01440764_10043.JPEG
│   │   └── n01440764_10048.JPEG
│   ├── ...
├── val/
│   ├── ILSVRC2012_val_00000001.JPEG
│   ├── ILSVRC2012_val_00000002.JPEG
│   ├── ILSVRC2012_val_00000003.JPEG
│   ├── ILSVRC2012_val_00000004.JPEG
│   ├── ...

Configuration

Once your dataset is organized in the way described above, you can use the ImageNet dataset with the below configurations:

train_dataloader = dict(
    ...
    # Training dataset configurations
    dataset=dict(
        type='ImageNet',
        data_root='data/imagenet',
        split='train',
        pipeline=...,
    )
)

val_dataloader = dict(
    ...
    # Validation dataset configurations
    dataset=dict(
        type='ImageNet',
        data_root='data/imagenet',
        split='val',
        pipeline=...,
    )
)

test_dataloader = val_dataloader

Supported Image Classification Datasets

Datasets

split

HomePage

Calthch101(data_root[, split, pipeline, …])

[“train”, “test”]

Caltech 101 Dataset.

CIFAR10(data_root[, split, pipeline, …])

[“train”, “test”]

CIFAR10 Dataset.

CIFAR100(data_root[, split, pipeline, …])

[“train”, “test”]

CIFAR100 Dataset.

CUB(data_root[, split, pipeline, …])

[“train”, “test”]

CUB-200-2011 Dataset.

DTD(data_root[, split, pipeline, …])

[“train”, “val”, “tranval”, “test”]

Describable Texture Dataset (DTD) Dataset.

FashionMNIST (data_root[, split, pipeline, …])

[“train”, “test”]

Fashion-MNIST Dataset.

FGVCAircraft(data_root[, split, pipeline, …])

[“train”, “val”, “tranval”, “test”]

FGVC Aircraft Dataset.

Flowers102(data_root[, split, pipeline, …])

[“train”, “val”, “tranval”, “test”]

Oxford 102 Flower Dataset.

Food101(data_root[, split, pipeline, …])

[“train”, “test”]

Food101 Dataset.

MNIST (data_root[, split, pipeline, …])

[“train”, “test”]

MNIST Dataset.

OxfordIIITPet(data_root[, split, pipeline, …])

[“tranval”, test”]

Oxford-IIIT Pets Dataset.

Places205(data_root[, pipeline, …])

-

Places205 Dataset.

StanfordCars(data_root[, split, pipeline, …])

[“train”, “test”]

Stanford Cars Dataset.

SUN397(data_root[, split, pipeline, …])

[“train”, “test”]

SUN397 Dataset.

VOC(data_root[, image_set_path, pipeline, …])

[“train”, “val”, “tranval”, “test”]

Pascal VOC Dataset.

Some dataset homepage links may be unavailable, and you can download datasets through OpenXLab, such as Stanford Cars.

Supported Multi-modality Datasets

Datasets

split

HomePage

RefCOCO(data_root, ann_file, data_prefix, split_file[, split, …])

[“train”, “val”, “test”]

RefCOCO Dataset.

Some dataset homepage links may be unavailable, and you can download datasets through OpenDataLab, such as RefCOCO.

OpenMMLab 2.0 Standard Dataset

In order to facilitate the training of multi-task algorithm models, we unify the dataset interfaces of different tasks. OpenMMLab has formulated the OpenMMLab 2.0 Dataset Format Specification. When starting a trainning task, the users can choose to convert their dataset annotation into the specified format, and use the algorithm library of OpenMMLab to perform algorithm training and testing based on the data annotation file.

The OpenMMLab 2.0 Dataset Format Specification stipulates that the annotation file must be in json or yaml, yml, pickle or pkl format; the dictionary stored in the annotation file must contain metainfo and data_list fields, The value of metainfo is a dictionary, which contains the meta information of the dataset; and the value of data_list is a list, each element in the list is a dictionary, the dictionary defines a raw data, each raw data contains a or several training/testing samples.

The following is an example of a JSON annotation file (in this example each raw data contains only one train/test sample):

{
    'metainfo':
        {
            'classes': ('cat', 'dog'), # the category index of 'cat' is 0 and 'dog' is 1.
            ...
        },
    'data_list':
        [
            {
                'img_path': "xxx/xxx_0.jpg",
                'gt_label': 0,
                ...
            },
            {
                'img_path': "xxx/xxx_1.jpg",
                'gt_label': 1,
                ...
            },
            ...
        ]
}

Assume you want to use the training dataset and the dataset is stored as the below structure:

data
├── annotations
│   ├── train.json
├── train
│   ├── xxx/xxx_0.jpg
│   ├── xxx/xxx_1.jpg
│   ├── ...

Build from the following dictionaries:

train_dataloader = dict(
    ...
    dataset=dict(
        type='BaseDataset',
        data_root='data',
        ann_file='annotations/train.json',
        data_prefix='train/',
        pipeline=...,
    )
)

Other Datasets

To find more datasets supported by MMPretrain, and get more configurations of the above datasets, please see the dataset documentation.

To implement your own dataset class for some special formats, please see the Adding New Dataset.

Dataset Wrappers

The following datawrappers are supported in MMEngine, you can refer to MMEngine tutorial to learn how to use it.

The MMPretrain also support KFoldDataset, please use it with tools/kfold-cross-valid.py.

Read the Docs v: latest
Versions
latest
stable
mmcls-1.x
mmcls-0.x
dev
Downloads
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.