Shortcuts

Source code for mmpretrain.models.multimodal.blip.blip_caption

# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional

import torch
from mmengine.model import BaseModel

from mmpretrain.registry import MODELS, TOKENIZER
from mmpretrain.structures import DataSample


[docs]@MODELS.register_module() class BlipCaption(BaseModel): """BLIP Caption. Args: vision_encoder (dict): Encoder for extracting image features. decoder_head (dict): The decoder head module to forward and calculate loss from processed features. tokenizer: (Optional[dict]): The config for tokenizer. Defaults to None. prompt (str): Prompt used for training and eval. Defaults to ''. max_txt_len (int): Max text length of input text. num_captions (int): Number of captions to be generated for each image. data_preprocessor (Optional[dict]): The config for preprocessing input data. If None or no specified type, it will use "MutimodalDataPreprocessor" as type. See :class:`MutimodalDataPreprocessor` for more details. Defaults to None. init_cfg (Optional[dict]): the config to control the initialization. Defaults to None. """ def __init__(self, vision_encoder: dict, decoder_head: dict, tokenizer: Optional[dict] = None, prompt: str = '', max_txt_len: int = 20, num_captions: int = 1, data_preprocessor: Optional[dict] = None, init_cfg: Optional[dict] = None): if data_preprocessor is None: data_preprocessor = {} if isinstance(data_preprocessor, dict): data_preprocessor.setdefault('type', 'MultiModalDataPreprocessor') data_preprocessor = MODELS.build(data_preprocessor) super(BlipCaption, self).__init__( init_cfg=init_cfg, data_preprocessor=data_preprocessor) self.tokenizer = TOKENIZER.build(tokenizer) self.visual_encoder = MODELS.build(vision_encoder) self.seq_gen_head = MODELS.build(decoder_head) self.prompt = prompt self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1 self.max_txt_len = max_txt_len self.num_captions = num_captions
[docs] def forward( self, images: torch.Tensor, data_samples: Optional[List] = None, mode: str = 'loss', ): """The unified entry for a forward process in both training and test. The method should accept two modes: "predict" and "loss": - "predict": Forward and return the predictions, which are fully processed to a list of :obj:`DataSample`. - "loss": Forward and return a dict of losses according to the given inputs and data samples. Note that this method doesn't handle neither back propagation nor optimizer updating, which are done in the :meth:`train_step`. Args: images (torch.Tensor): pre_processed img tensor (N, C, ...). data_samples (List[DataSample], optional): Data samples with additional infos. mode (str): Return what kind of value. Defaults to 'loss'. Returns: The return type depends on ``mode``. - If ``mode="loss"``, return a dict of tensor. """ if mode == 'loss': return self.loss(images, data_samples) elif mode == 'predict': return self.predict(images, data_samples) else: raise RuntimeError(f'Invalid mode "{mode}".')
[docs] def predict(self, images, data_samples=None, **kwargs): """Predict captions from a batch of inputs. Args: images (torch.Tensor): The input images tensor with shape (N, C, ...) in general. data_samples (List[DataSample], optional): The annotation data of every samples. Defaults to None. **kwargs: Other keyword arguments accepted by the ``predict`` method of :attr:`head`. Returns: List[DataSample]: Return list of data samples. """ # prepare inputs for decoder generation. image_embeds = self.visual_encoder(images)[0] image_embeds = torch.repeat_interleave(image_embeds, self.num_captions, 0) prompt = [self.prompt] * image_embeds.size(0) prompt = self.tokenizer( prompt, padding='longest', return_tensors='pt').to(image_embeds.device) prompt.input_ids[:, 0] = self.tokenizer.bos_token_id prompt.input_ids = prompt.input_ids[:, :-1] decoder_out = self.seq_gen_head.predict( input_ids=prompt.input_ids, encoder_hidden_states=image_embeds, sep_token_id=self.tokenizer.sep_token_id, pad_token_id=self.tokenizer.pad_token_id, output_attentions=True, return_dict_in_generate=True, ) decode_tokens = self.tokenizer.batch_decode( decoder_out.sequences, skip_special_tokens=True) out_data_samples = [] if data_samples is None: data_samples = [None for _ in range(len(decode_tokens))] for data_sample, decode_token in zip(data_samples, decode_tokens): if data_sample is None: data_sample = DataSample() data_sample.pred_caption = decode_token[len(self.prompt):] out_data_samples.append(data_sample) return out_data_samples
[docs] def loss(self, images, data_samples): """Calculate losses from a batch of images and data samples. Args: images (torch.Tensor): The input images tensor with shape (N, C, ...) in general. data_samples (List[ImageTextDataSample]): The annotation data of every samples. Returns: dict[str, Tensor]: a dictionary of loss components. """ image_embeds = self.visual_encoder(images)[0] raw_text = [self.prompt + ds.gt_caption for ds in data_samples] text = self.tokenizer( raw_text, padding='longest', truncation=True, max_length=self.max_txt_len, return_tensors='pt', ).to(image_embeds.device) text.input_ids[:, 0] = self.tokenizer.bos_token_id # prepare targets for forwarding decoder labels = text.input_ids.masked_fill( text.input_ids == self.tokenizer.pad_token_id, -100) labels[:, :self.prompt_length] = -100 # forward decoder image_atts = torch.ones( image_embeds.size()[:-1], dtype=torch.long).to(image_embeds.device) losses = self.seq_gen_head.loss( input_ids=text.input_ids, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, labels=labels, ) return losses