Shortcuts

Source code for mmpretrain.models.multimodal.blip.blip_grounding

# Copyright (c) OpenMMLab. All rights reserved.
import copy
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
from mmengine.model import BaseModel

from mmpretrain.models.utils.box_utils import box_xyxy_to_cxcywh
from mmpretrain.registry import MODELS, TOKENIZER
from mmpretrain.structures.data_sample import DataSample


[docs]@MODELS.register_module() class BlipGrounding(BaseModel): """BLIP Grounding. Args: visual_encoder (dict): Backbone for extracting image features. text_encoder (dict): Backbone for extracting text features. but we integrate the vqa text extractor into the tokenizer part in datasets/transform/ so we don't need text_backbone multimodal_encoder (Optional[dict]): Backbone for extracting multi-modal features. We apply this part as VQA fusion module. neck (Optional[dict]): The neck module to process features from backbone. Defaults to None. head (Optional[Union[List[dict], dict]]): The head module to calculate loss from processed features. See :mod:`mmpretrain.models.heads`. Notice that if the head is not set, `loss` method cannot be used. Defaults to None. data_preprocessor (Optional[dict]): The config for preprocessing input data. If None or no specified type, it will use "MutimodalDataPreprocessor" as type. See :class:`MutimodalDataPreprocessor` for more details. Defaults to None. init_cfg (Optional[dict]): the config to control the initialization. Defaults to None. """ def __init__(self, tokenizer: Optional[dict] = None, visual_encoder: Optional[dict] = None, text_encoder: Optional[dict] = None, multimodal_encoder: Optional[dict] = None, head: Optional[Union[List[dict], dict]] = None, data_preprocessor: Optional[dict] = None, init_cfg: Optional[dict] = None) -> None: if data_preprocessor is None: data_preprocessor = {} if isinstance(data_preprocessor, dict): data_preprocessor.setdefault('type', 'MultiModalDataPreprocessor') data_preprocessor = MODELS.build(data_preprocessor) super(BlipGrounding, self).__init__( init_cfg=init_cfg, data_preprocessor=data_preprocessor) self.tokenizer = TOKENIZER.build(tokenizer) self.prompt = 'localize instance: ' self.visual_encoder = MODELS.build(visual_encoder) self.text_encoder = MODELS.build(text_encoder) self.multimodal_encoder = MODELS.build(multimodal_encoder) head.setdefault('tokenizer', self.tokenizer) self.grounding_head = MODELS.build(head)
[docs] def forward( self, images: torch.Tensor, data_samples: Optional[List[DataSample]] = None, mode: str = 'loss', ): """The unified entry for a forward process in both training and test. The method should accept only one mode "loss": - "loss": Forward and return a dict of losses according to the given inputs and data samples. Note that this method doesn't handle neither back propagation nor optimizer updating, which are done in the :meth:`train_step`. Args: inputs (torch.Tensor, tuple): The input tensor with shape (N, C, ...) in general. data_samples (List[VQADataSample], optional): The annotation data of every samples. It's required if ``mode="loss"``. Defaults to None. mode (str): Return what kind of value. Defaults to 'loss'. Returns: The return type depends on ``mode``. - If ``mode="loss"``, return a dict of tensor. """ if mode == 'loss': return self.loss(images, data_samples) elif mode == 'predict': return self.predict(images, data_samples) else: raise RuntimeError(f'Invalid mode "{mode}".')
[docs] def extract_feat(self, images: torch.Tensor) -> torch.Tensor: """Extract features from the input tensor with shape (N, C, ...). Args: inputs (Tensor): A batch of inputs. The shape of it should be ``(num_samples, num_channels, *img_shape)``. Returns: image_embeds (Tensor): The output features. """ image_embeds = self.visual_encoder(images)[0] return image_embeds
[docs] def loss( self, images: torch.Tensor, data_samples=None, ) -> Union[torch.Tensor, Tuple[torch.Tensor]]: """generate train_loss from the input tensor and data_samples. Args: inputs (Tensor): A batch of inputs. The shape of it should be ``(num_samples, num_channels, *img_shape)``. data_samples (List[VQADataSample], optional): The annotation data of every samples.. Returns: Dict[torch.Tensor]: The losses features. """ # extract image feature image_embeds = self.extract_feat(images) image_atts = image_embeds.new_ones( image_embeds.size()[:-1], dtype=torch.long) raw_text = [] box_targets = [] for ds in data_samples: raw_text.append(ds.text) box_t = copy.deepcopy(ds.box) * 1.0 box_t[1] /= ds.img_shape[0] box_t[3] /= ds.img_shape[0] box_t[0] /= ds.img_shape[1] box_t[2] /= ds.img_shape[1] box_targets.append(box_t) box_targets = image_embeds.new_tensor(np.stack(box_targets)) box_targets = box_xyxy_to_cxcywh(box_targets) # xywh 0-1 text = self.tokenizer( raw_text, padding='longest', truncation=True, max_length=128, return_tensors='pt', ).to(image_embeds.device) text_embeds = self.text_encoder( text.input_ids, attention_mask=text.attention_mask, mode='text', return_dict=True) # bz, seq_len, hid # multimodal fusion multimodal_embeds = self.multimodal_encoder( encoder_embeds=text_embeds.last_hidden_state, attention_mask=text.attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=True, ) # put answer from data_samples into tensor form losses = self.grounding_head.loss( text_embedding=multimodal_embeds.last_hidden_state, text_embedding_mask=text.attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, decoder_targets=box_targets, ) return losses
def predict(self, images, data_samples=None): """""" # extract image feature image_embeds = self.extract_feat(images) image_atts = image_embeds.new_ones( image_embeds.size()[:-1], dtype=torch.long) raw_text = [] for ds in data_samples: raw_text.append(ds.text) text = self.tokenizer( raw_text, padding='longest', truncation=True, max_length=128, return_tensors='pt', ).to(image_embeds.device) text_embeds = self.text_encoder( text.input_ids, attention_mask=text.attention_mask, mode='text', return_dict=True) # bz, seq_len, hid # multimodal fusion multimodal_embeds = self.multimodal_encoder( encoder_embeds=text_embeds.last_hidden_state, attention_mask=text.attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=True, ) # put answer from data_samples into tensor form output_boxes = self.grounding_head.predict( text_embedding=multimodal_embeds.last_hidden_state, text_embedding_mask=text.attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, ) # xyxy 0-1 out_data_samples = [] for bbox, data_sample, img in zip(output_boxes, data_samples, images): if data_sample is None: data_sample = DataSample() img_size = img.shape[-2:] scale_factor = data_sample.get('scale_factor', (1, 1)) bbox[0::2] = bbox[0::2] * img_size[1] / scale_factor[0] bbox[1::2] = bbox[1::2] * img_size[0] / scale_factor[1] bbox = bbox[None, :] data_sample.pred_bboxes = bbox if 'gt_bboxes' in data_sample: gt_bboxes = torch.Tensor(data_sample.get('gt_bboxes')) gt_bboxes[:, 0::2] /= scale_factor[0] gt_bboxes[:, 1::2] /= scale_factor[1] data_sample.gt_bboxes = gt_bboxes out_data_samples.append(data_sample) return out_data_samples
Read the Docs v: latest
Versions
latest
stable
mmcls-1.x
mmcls-0.x
dev
Downloads
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.