Shortcuts

Source code for mmpretrain.models.necks.cae_neck

# Copyright (c) OpenMMLab. All rights reserved.
from typing import Tuple

import torch
import torch.nn as nn
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks import DropPath
from mmcv.cnn.bricks.transformer import FFN
from mmengine.model import BaseModule
from mmengine.model.weight_init import trunc_normal_

from mmpretrain.models.backbones.beit import BEiTTransformerEncoderLayer
from mmpretrain.registry import MODELS
from ..utils import CrossMultiheadAttention


class CAETransformerRegressorLayer(BaseModule):
    """Transformer layer for the regressor of CAE.

    This module is different from conventional transformer encoder layer, for
    its queries are the masked tokens, but its keys and values are the
    concatenation of the masked and unmasked tokens.

    Args:
        embed_dims (int): The feature dimension.
        num_heads (int): The number of heads in multi-head attention.
        feedforward_channels (int): The hidden dimension of FFNs.
            Defaults: 1024.
        num_fcs (int, optional): The number of fully-connected layers in
            FFNs. Default: 2.
        qkv_bias (bool): If True, add a learnable bias to q, k, v.
            Defaults to True.
        qk_scale (float, optional): Override default qk scale of
            ``head_dim ** -0.5`` if set. Defaults to None.
        drop_rate (float): The dropout rate. Defaults to 0.0.
        attn_drop_rate (float): The drop out rate for attention output weights.
            Defaults to 0.
        drop_path_rate (float): Stochastic depth rate. Defaults to 0.
        layer_scale_init_value (float): The init value of gamma.
            Defaults to 0.0.
        act_cfg (dict): The activation config for FFNs.
            Defaults to ``dict(type='GELU')``.
        norm_cfg (dict): Config dict for normalization layer.
            Defaults to ``dict(type='LN')``.
    """

    def __init__(
        self,
        embed_dims: int,
        num_heads: int,
        feedforward_channels: int,
        num_fcs: int = 2,
        qkv_bias: bool = False,
        qk_scale: float = None,
        drop_rate: float = 0.,
        attn_drop_rate: float = 0.,
        drop_path_rate: float = 0.,
        layer_scale_init_value: float = 0.0,
        act_cfg: dict = dict(type='GELU'),
        norm_cfg: dict = dict(type='LN', eps=1e-6)
    ) -> None:
        super().__init__()

        # NOTE: cross attention
        _, self.norm1_q_cross = build_norm_layer(
            norm_cfg, embed_dims, postfix=2)
        _, self.norm1_k_cross = build_norm_layer(
            norm_cfg, embed_dims, postfix=2)
        _, self.norm1_v_cross = build_norm_layer(
            norm_cfg, embed_dims, postfix=2)
        _, self.norm2_cross = build_norm_layer(norm_cfg, embed_dims, postfix=2)
        self.cross_attn = CrossMultiheadAttention(
            embed_dims,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop_rate,
            proj_drop=drop_rate)

        self.ffn = FFN(
            embed_dims=embed_dims,
            feedforward_channels=feedforward_channels,
            num_fcs=num_fcs,
            ffn_drop=drop_rate,
            dropout_layer=None,
            act_cfg=act_cfg,
            add_identity=False)

        self.drop_path = DropPath(drop_prob=drop_path_rate)

        if layer_scale_init_value > 0:
            self.gamma_1_cross = nn.Parameter(
                layer_scale_init_value * torch.ones((embed_dims)),
                requires_grad=True)
            self.gamma_2_cross = nn.Parameter(
                layer_scale_init_value * torch.ones((embed_dims)),
                requires_grad=True)
        else:
            self.gamma_1_cross = nn.Parameter(
                torch.ones((embed_dims)), requires_grad=False)
            self.gamma_2_cross = nn.Parameter(
                torch.ones((embed_dims)), requires_grad=False)

    def forward(self, x_q: torch.Tensor, x_kv: torch.Tensor,
                pos_q: torch.Tensor, pos_k: torch.Tensor) -> torch.Tensor:
        """Forward function."""
        x = x_q + self.drop_path(self.gamma_1_cross * self.cross_attn(
            self.norm1_q_cross(x_q + pos_q),
            k=self.norm1_k_cross(x_kv + pos_k),
            v=self.norm1_v_cross(x_kv)))
        x = self.norm2_cross(x)
        x = x + self.drop_path(self.gamma_2_cross * self.ffn(x))

        return x


[docs]@MODELS.register_module() class CAENeck(BaseModule): """Neck for CAE Pre-training. This module construct the latent prediction regressor and the decoder for the latent prediction and final prediction. Args: num_classes (int): The number of classes for final prediction. Defaults to 8192. embed_dims (int): The embed dims of latent feature in regressor and decoder. Defaults to 768. regressor_depth (int): The number of regressor blocks. Defaults to 6. decoder_depth (int): The number of decoder blocks. Defaults to 8. num_heads (int): The number of head in multi-head attention. Defaults to 12. mlp_ratio (int): The expand ratio of latent features in MLP. defaults to 4. qkv_bias (bool): Whether or not to use qkv bias. Defaults to True. qk_scale (float, optional): The scale applied to the results of qk. Defaults to None. drop_rate (float): The dropout rate. Defaults to 0. attn_drop_rate (float): The dropout rate in attention block. Defaults to 0. norm_cfg (dict): The config of normalization layer. Defaults to dict(type='LN', eps=1e-6). layer_scale_init_value (float, optional): The init value of gamma. Defaults to None. mask_tokens_num (int): The number of mask tokens. Defaults to 75. init_cfg (dict, optional): Initialization config dict. Defaults to None. """ def __init__(self, num_classes: int = 8192, embed_dims: int = 768, regressor_depth: int = 6, decoder_depth: int = 8, num_heads: int = 12, mlp_ratio: int = 4, qkv_bias: bool = True, qk_scale: float = None, drop_rate: float = 0., attn_drop_rate: float = 0., drop_path_rate: float = 0., norm_cfg: dict = dict(type='LN', eps=1e-6), layer_scale_init_value: float = None, mask_tokens_num: int = 75, init_cfg: dict = None) -> None: super().__init__(init_cfg=init_cfg) self.num_features = self.embed_dim = embed_dims self.mask_token_num = mask_tokens_num # regressor regressor_drop_path_rates = [ x.item() for x in torch.linspace(0, drop_path_rate, regressor_depth) ] self.regressors = nn.ModuleList([ CAETransformerRegressorLayer( embed_dims=embed_dims, num_heads=num_heads, feedforward_channels=mlp_ratio * embed_dims, qkv_bias=qkv_bias, qk_scale=qk_scale, drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, drop_path_rate=regressor_drop_path_rates[i], norm_cfg=norm_cfg, layer_scale_init_value=layer_scale_init_value) for i in range(regressor_depth) ]) # decoder decoder_drop_path_rates = [ x.item() for x in torch.linspace(0, drop_path_rate, decoder_depth) ] self.decoders = nn.ModuleList([ BEiTTransformerEncoderLayer( embed_dims=embed_dims, num_heads=num_heads, feedforward_channels=mlp_ratio * embed_dims, layer_scale_init_value=layer_scale_init_value, window_size=None, # setting `use_rel_pos_bias` to False ignores the `window_size` use_rel_pos_bias=False, drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, drop_path_rate=decoder_drop_path_rates[i], norm_cfg=norm_cfg) for i in range(decoder_depth) ]) _, self.norm_regressor = build_norm_layer( norm_cfg, embed_dims, postfix=2) _, self.norm_decoder = build_norm_layer( norm_cfg, embed_dims, postfix=2) self.head = nn.Linear( embed_dims, num_classes) if num_classes > 0 else nn.Identity() self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dims))
[docs] def init_weights(self) -> None: """Initialization.""" super().init_weights() self.apply(self._init_weights) trunc_normal_(self.mask_token, std=0.02) trunc_normal_(self.head.weight, std=0.02)
def _init_weights(self, m: nn.Module) -> None: """Initialization.""" if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0)
[docs] def forward( self, x_unmasked: torch.Tensor, pos_embed_masked: torch.Tensor, pos_embed_unmasked: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: """Get the latent prediction and final prediction. Args: x_unmasked (torch.Tensor): Features of unmasked tokens. pos_embed_masked (torch.Tensor): Position embedding of masked tokens. pos_embed_unmasked (torch.Tensor): Position embedding of unmasked tokens. Returns: Tuple[torch.Tensor, torch.Tensor]: - ``logits``: Final prediction. - ``latent_pred``: Latent prediction. """ x_masked = self.mask_token.expand(x_unmasked.shape[0], self.mask_token_num, -1) # regressor for regressor in self.regressors: x_masked = regressor( x_masked, torch.cat([x_unmasked, x_masked], dim=1), pos_embed_masked, torch.cat([pos_embed_unmasked, pos_embed_masked], dim=1)) x_masked = self.norm_regressor(x_masked) latent_pred = x_masked # decoder x_masked = x_masked + pos_embed_masked for decoder in self.decoders: x_masked = decoder(x_masked, rel_pos_bias=None) x_masked = self.norm_decoder(x_masked) logits = self.head(x_masked) return logits, latent_pred
Read the Docs v: latest
Versions
latest
stable
mmcls-1.x
mmcls-0.x
dev
Downloads
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.