Source code for mmpretrain.models.necks.simmim_neck
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmengine.model import BaseModule
from mmpretrain.registry import MODELS
[docs]@MODELS.register_module()
class SimMIMLinearDecoder(BaseModule):
"""Linear Decoder For SimMIM pretraining.
This neck reconstructs the original image from the shrunk feature map.
Args:
in_channels (int): Channel dimension of the feature map.
encoder_stride (int): The total stride of the encoder.
"""
def __init__(self, in_channels: int, encoder_stride: int) -> None:
super().__init__()
self.decoder = nn.Sequential(
nn.Conv2d(
in_channels=in_channels,
out_channels=encoder_stride**2 * 3,
kernel_size=1),
nn.PixelShuffle(encoder_stride),
)
[docs] def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward function."""
x = self.decoder(x)
return x