Source code for mmpretrain.models.selfsup.simsiam
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List
import torch
from mmpretrain.registry import MODELS
from mmpretrain.structures import DataSample
from .base import BaseSelfSupervisor
[docs]@MODELS.register_module()
class SimSiam(BaseSelfSupervisor):
"""SimSiam.
Implementation of `Exploring Simple Siamese Representation Learning
<https://arxiv.org/abs/2011.10566>`_. The operation of fixing learning rate
of predictor is in `engine/hooks/simsiam_hook.py`.
"""
[docs] def loss(self, inputs: List[torch.Tensor], data_samples: List[DataSample],
**kwargs) -> Dict[str, torch.Tensor]:
"""The forward function in training.
Args:
inputs (List[torch.Tensor]): The input images.
data_samples (List[DataSample]): All elements required
during the forward function.
Returns:
Dict[str, torch.Tensor]: A dictionary of loss components.
"""
assert isinstance(inputs, list)
img_v1 = inputs[0]
img_v2 = inputs[1]
z1 = self.neck(self.backbone(img_v1))[0] # NxC
z2 = self.neck(self.backbone(img_v2))[0] # NxC
loss_1 = self.head.loss(z1, z2)
loss_2 = self.head.loss(z2, z1)
losses = dict(loss=0.5 * (loss_1 + loss_2))
return losses