ImageClassificationInferencer¶
- class mmpretrain.apis.ImageClassificationInferencer(model, pretrained=True, device=None, classes=None, **kwargs)[source]¶
The inferencer for image classification.
- Parameters:
model (BaseModel | str | Config) – A model name or a path to the config file, or a
BaseModel
object. The model name can be found byImageClassificationInferencer.list_models()
and you can also query it in 模型库统计.pretrained (str, optional) – Path to the checkpoint. If None, it will try to find a pre-defined weight from the model you specified (only work if the
model
is a model name). Defaults to None.device (str, optional) – Device to run inference. If None, the available device will be automatically used. Defaults to None.
**kwargs – Other keyword arguments to initialize the model (only work if the
model
is a model name).
Example
Use a pre-trained model in MMPreTrain to inference an image.
>>> from mmpretrain import ImageClassificationInferencer >>> inferencer = ImageClassificationInferencer('resnet50_8xb32_in1k') >>> inferencer('demo/demo.JPEG') [{'pred_score': array([...]), 'pred_label': 65, 'pred_score': 0.6649367809295654, 'pred_class': 'sea snake'}]
Use a config file and checkpoint to inference multiple images on GPU, and save the visualization results in a folder.
>>> from mmpretrain import ImageClassificationInferencer >>> inferencer = ImageClassificationInferencer( model='configs/resnet/resnet50_8xb32_in1k.py', pretrained='https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb32_in1k_20210831-ea4938fc.pth', device='cuda') >>> inferencer(['demo/dog.jpg', 'demo/bird.JPEG'], show_dir="./visualize/")
- __call__(inputs, return_datasamples=False, batch_size=1, **kwargs)[source]¶
Call the inferencer.
- Parameters:
inputs (str | array | list) – The image path or array, or a list of images.
return_datasamples (bool) – Whether to return results as
DataSample
. Defaults to False.batch_size (int) – Batch size. Defaults to 1.
resize (int, optional) – Resize the short edge of the image to the specified length before visualization. Defaults to None.
rescale_factor (float, optional) – Rescale the image by the rescale factor for visualization. This is helpful when the image is too large or too small for visualization. Defaults to None.
draw_score (bool) – Whether to draw the prediction scores of prediction categories. Defaults to True.
show (bool) – Whether to display the visualization result in a window. Defaults to False.
wait_time (float) – The display time (s). Defaults to 0, which means “forever”.
show_dir (str, optional) – If not None, save the visualization results in the specified directory. Defaults to None.
- Returns:
The inference results.
- Return type: