RegNet¶
- class mmpretrain.models.backbones.RegNet(arch, in_channels=3, stem_channels=32, base_channels=32, strides=(2, 2, 2, 2), dilations=(1, 1, 1, 1), out_indices=(3,), style='pytorch', deep_stem=False, avg_down=False, frozen_stages=-1, conv_cfg=None, norm_cfg={'requires_grad': True, 'type': 'BN'}, norm_eval=False, with_cp=False, zero_init_residual=True, init_cfg=None)[source]¶
RegNet backbone.
More details can be found in paper .
- Parameters:
arch (dict) – The parameter of RegNets. - w0 (int): initial width - wa (float): slope of width - wm (float): quantization parameter to quantize the width - depth (int): depth of the backbone - group_w (int): width of group - bot_mul (float): bottleneck ratio, i.e. expansion of bottleneck.
strides (Sequence[int]) – Strides of the first block of each stage.
base_channels (int) – Base channels after stem layer.
in_channels (int) – Number of input image channels. Default: 3.
dilations (Sequence[int]) – Dilation of each stage.
out_indices (Sequence[int]) – Output from which stages.
style (str) – pytorch or caffe. If set to “pytorch”, the stride-two layer is the 3x3 conv layer, otherwise the stride-two layer is the first 1x1 conv layer. Default: “pytorch”.
frozen_stages (int) – Stages to be frozen (all param fixed). -1 means not freezing any parameters. Default: -1.
norm_cfg (dict) – dictionary to construct and config norm layer. Default: dict(type=’BN’, requires_grad=True).
norm_eval (bool) – Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Default: False.
with_cp (bool) – Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False.
zero_init_residual (bool) – whether to use zero init for last norm layer in resblocks to let them behave as identity. Default: True.
Example
>>> from mmpretrain.models import RegNet >>> import torch >>> self = RegNet( arch=dict( w0=88, wa=26.31, wm=2.25, group_w=48, depth=25, bot_mul=1.0)) >>> self.eval() >>> inputs = torch.rand(1, 3, 32, 32) >>> level_outputs = self.forward(inputs) >>> for level_out in level_outputs: ... print(tuple(level_out.shape)) (1, 96, 8, 8) (1, 192, 4, 4) (1, 432, 2, 2) (1, 1008, 1, 1)
- adjust_width_group(widths, bottleneck_ratio, groups)[source]¶
Adjusts the compatibility of widths and groups.
- generate_regnet(initial_width, width_slope, width_parameter, depth, divisor=8)[source]¶
Generates per block width from RegNet parameters.
- Parameters:
- Returns:
- tuple containing:
list: Widths of each stage.
int: The number of stages.
- Return type: