ConformerHead¶
- class mmpretrain.models.heads.ConformerHead(num_classes, in_channels, init_cfg={'layer': 'Linear', 'std': 0.02, 'type': 'TruncNormal'}, **kwargs)[source]¶
Linear classifier head.
- Parameters:
- pre_logits(feats)[source]¶
The process before the final classification head.
The input
feats
is a tuple of tensor, and each tensor is the feature of a backbone stage. InConformerHead
, we just obtain the feature of the last stage.
- predict(feats, data_samples=None)[source]¶
Inference without augmentation.
- Parameters:
feats (tuple[Tensor]) – The features extracted from the backbone. Multiple stage inputs are acceptable but only the last stage will be used to classify. The shape of every item should be
(num_samples, num_classes)
.data_samples (List[DataSample], optional) – The annotation data of every samples. If not None, set
pred_label
of the input data samples. Defaults to None.
- Returns:
A list of data samples which contains the predicted results.
- Return type:
List[DataSample]